

Academic Storage Cluster
Alexander von Tottleben

Data & Knowledge
Engineering

University of Wuppertal
Wuppertal, Germany

alexander@vontottleben.de

Cornelius Ihle
Data & Knowledge

Engineering
University of Wuppertal
Wuppertal, Germany

ihle@gipplab.org

Moritz Schubotz
Dept. of Mathematics

FIZ ± Karlsruhe
Berlin, Germany

moritz.schubotz@fiz-
karlsruhe.de

Bela Gipp
Data & Knowledge

Engineering
University of Wuppertal

Wuppertal, Germany
gipp@uni-wuppertal.de

Abstract— Decentralized storage is still rarely used in an
academic and educational environment, although it offers
better availability than conventional systems. It still happens
that data is not available at a certain time due to heavy load or
maintenance on university servers. A decentralized solution
can help keep the data available and distribute the load among
several peers. In our experiment, we created a cluster of
containers in Docker to evaluate a private IPFS cluster for an
academic data store focusing on availability, GET/PUT
performance, and storage needs. As sample data, we used PDF
files to analyze the data transport in our peer-to-peer network
with Wireshark. We found that a bandwidth of at least 100
kbit/s is required for IPFS to function but recommend at least
1000 kbit/s for smooth operation. Also, the hard disk and
memory size should be adapted to the data. Other limiting
factors such as CPU power and delay in the internet
connection did not affect the operation of the IPFS cluster.

Keywords—peer-to-peer, decentralized data storage, IPFS,
distributed systems

I. INTRODUCTION
In this project, we identify the benefits and shortcomings

of recent decentralized content-addressable storage solutions
on the example of IPFS and its suitability to store, retrieve,
and manage academic documents. For this purpose, we
evaluate the read/write performance and chunk distribution
inside a private cluster. Instead of downloading the data from
a specific server to another client, a peer asks other nearby
peers for the information. Similarly, data is provided by
others in the network; hence the information should still be
retrievable when a single peer is offline or lost its data. This
works because the pinned data is replicated at each cluster
peer and addressed by its content.

II. SYSTEM
In our approach, we simulate a cluster of nodes on a

single host. This way, we can control network parameters
and monitor resource demands in an isolated and controlled
setup. Each node runs the IPFS cluster software, with one
node set up as a bootstrap node, so peers initially can join
the cluster. We used the virtualization software Docker to set
up multiple containers to connect them and control variables
on the host. As the host operating system, we chose Ubuntu
20.04.1 [1] because it offers a balance between ease of use,
availability of tools, performance, and relatively lightweight
in terms of resource requirements.

For the containers, we created a Dockerfile, which is
based on alpine and supports a packet manager to extend the
instance with software for IPFS [2], IPFS-Cluster,

monitoring tools, compilers, network restriction and
analyzing tools. To configure the restrictions, we used
Traffic Control (tc is part of iproute2). Here we specified the
bandwidth and an artificial delay. The CPU and memory
configuration is specifiable in Docker. The IPFS daemon is
started last on each container. We captured the connections
and package of the whole cluster in Wireshark on the host.

III. INTERPLANETARY FILE SYSTEM

A. Function
In HTTP clients UeTXeVW WKe daWa¶V location to initiate data

retrieval. This location information comes in the form of an
IP address and the file¶V path but usually uses a DNS domain
to provide a human-readable identifier. Since the data is
specified by its location, it is not guaranteed to be the exact
requested data we expect.

IPFS, on the other hand, addresses the data according to
the content itself (content-addressing) [3]. For this reason, a
fingerprint (content hash) must be created for each file. This
allows the data to be uniquely described and verified.

To check whether the data is still available, a provider
call is executed by the cluster software at regular intervals.
Furthermore, duplicates can be avoided by cleverly dividing
the files into chunks and using data structures like the
Merkle DAG [4]. Each node stores only the data a user has
pinned or cached, and the IDs of neighboring participating
peers [3]. Additionally, a bootstrap node or mDNS is
required to allow IPFS nodes to initially find other peers to
form the private cluster swarm. Public IPFS bootstrap nodes
would compromise privacy, hence, we use our private
bootstrap-node to onboard new participating peers.

B. Cluster
The cluster consists of multiple IPFS nodes in a swarm
configuration as shown in Figure 1.

Figure 1: IPFS swarm and cluster

Running a cluster like this has the following advantages:
1. A cluster is horizontally scalable by simply adding

more peers to distribute the load in the system.
2. Nodes can use a different network connection, location,

and power sources to improve the system's robustness.
3. A larger number of replicating cluster peers and the

monitoring of the replication improves availability.

C. Private Cluster
As default IPFS runs in public mode, so every peer can

request blocks with a want-list, and other nodes serve the
block if available. Everyone can make data available from
their node. Sensitive data however should be shared within a
certain group of nodes. In our scenario we want data to be
distributed only to selected peers. Also, the environment
needs to be consistent so we can change one parameter and
measure the impact. However, a private cluster cannot be
used by peers other than the ones we initialize. This means
that privacy is guaranteed at the price of having the storage
space limited to the capacity of the private peers.

IV. EVALUATION

A. Methodology
We measured several system parameters to analyze the

IPFS-peers' resource demands. IPFS applies chunking to
distribute each file as 256 kB-sized fractions, making the
datatype irrelevant. The test file (6.93 MB) was provided by
a peer and then pinned by the cluster. We monitored the
pinning status until all cluster peers replicated it. Then we
deleted the file on a different peer and confirmed it. Finally,
we executed a GET from the peer where the file was
deleted. For all operations, the duration, quantity of packets,
network load, as well as CPU and memory demands were
monitored and documented. This way slow networks can be
simulated by reducing the bandwidth and increasing the
response times artificially. Further, slow peers can be
simulated by allocating fewer resources to a particular peer.
In Docker changes are easy to make and Wireshark only
needs to run on the hosting machine for data investigation.
But a simulation has limitations since it cannot mimic the
complexity of real peers at different locations.

B. Results
By analyzing the traffic in Wireshark (Figure 2), we

proved the data distribution to all peers. The traffic data also
demonstrated that data was replicated correctly, and the file
was divided and transmitted in the form of multiple chunks.

1) Bandwidth Limitation: IPFS worked starting from a
bandwidth of about 100 kbit/s, below that the peer was not
recognized by others in the network. The more bandwidth

was available to a peer, the more likely that peer was to
provide chunks in priority to others. This resulted in a larger
number of bigger packets. For bandwidths beyond 1 Mbit/s,
this effect was no longer noticeable, since the number of
transmitted packets from fast (10 Mbit/s) and slow (1
Mbit/s) peers was about the same. During 10 tests with very
low bandwidth (approx. 100 kbit/s), we detected that
affected peers slow down the entire cluster. Deactivating
this peer recovered the download speed. It is advantageous
to connect all peers with at least 1 Mbit/s for good response.

2) Transmission Time Manipulation: About 20 tests
showed that using varying delays (10 to 2000 ms) in the
connection to simulate a slow response time did not affect
the choice of the peers for data-provisioning. Thus, the peer
with a high simulated ping was chosen to provide data just
as a peer with a low response time.

3) System Limitation: Limiting the CPU did not lead to
any measurable difference. However, limiting the available
memory had an impact on the system. For example, a
running container with a PDF file requires about 200 MB of
memory. Since Docker stores most of the running container
data in the host machine's memory, bottlenecks can quickly
occur with large files. These types of files were therefore
not tested, due to the limitations of our test setup. The entire
results are available in our GitHub repository [5].

C. Conclusion
A cluster can offer benefits over conventional server-

client systems like redundancy, easier scalability, and
enhanced availability because of its cooperating peers. We
created a controlled environment with minimal uncertainties
to obtain consistent data. We provide Dockerfiles on GitHub
[5] to ensure reproducibility and easy setup in future
research. Further, we developed scripts to automate the
evaluation and provisioning of peers and tools with a single
command. As expected, the bandwidth limitation slowed
down download speeds, and the CPU limitation had
minimal to no impact. In contrast, we see that the simulated
long response time of up to 2 s had no negative effect on the
choice of providing peers. Further experiments with real
distributed machines are needed to explore whether an IPFS
cluster is suitable as a decentralized academic repository.

[1] ³FRcaOFRVVa/ReOeaVeNRWeV/CKaQgeSXPPaU\/20.04.1 - UbXQWX WLNL.´

https://wiki.ubuntu.com/FocalFossa/ReleaseNotes/ChangeSummary/
20.04.1 (accessed Jan. 21, 2021).

[2] ³LSfV/gR-ipfs - DRcNeU HXb.´ KWWSV://KXb.dRcNeU.cRP/U/LSfV/gR-ipfs
(accessed Jan. 22, 2021).

[3] J. BeQeW, ³IPFS - Content Addressed, Versioned, P2P File SyVWeP,´
ArXiv14073561 Cs, Jul. 2014, Accessed: Dec. 01, 2020. [Online].
Available: http://arxiv.org/abs/1407.3561

[4] J. KaQ aQd K. S. KLP, ³MTFS: MeUNOe-Tree-BaVed FLOe S\VWeP,´ LQ
2019 IEEE International Conference on Blockchain and
Cryptocurrency (ICBC), Seoul, Korea (South), May 2019, pp. 43±47.
doi: 10.1109/BLOC.2019.8751389.

[5] ³ag-gipp/acst: ACademic-STorage-cOXVWeU.´ KWWSV://gLWKXb.cRP/ag-
gipp/acst (accessed Apr. 28, 2021).

Figure 2: Peer Load Distribution

