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Abstract
Word embedding, which represents individual words with semantically fixed-length vec-
tors, has made it possible to successfully apply deep learning to natural language process-
ing tasks such as semantic role-modeling, question answering, and machine translation. 
As math text consists of natural text, as well as math expressions that similarly exhibit 
linear correlation and contextual characteristics, word embedding techniques can also be 
applied to math documents. However, while mathematics is a precise and accurate science, 
it is usually expressed through imprecise and less accurate descriptions, contributing to the 
relative dearth of machine learning applications for information retrieval in this domain. 
Generally, mathematical documents communicate their knowledge with an ambiguous, 
context-dependent, and non-formal language. Given recent advances in word embedding, 
it is worthwhile to explore their use and effectiveness in math information retrieval tasks, 
such as math language processing and semantic knowledge extraction. In this paper, we 
explore math embedding by testing it on several different scenarios, namely, (1) math-term 
similarity, (2) analogy, (3) numerical concept-modeling based on the centroid of the key-
words that characterize a concept, (4) math search using query expansions, and (5) seman-
tic extraction, i.e., extracting descriptive phrases for math expressions. Due to the lack of 
benchmarks, our investigations were performed using the arXiv collection of STEM docu-
ments and carefully selected illustrations on the Digital Library of Mathematical Functions 
(DLMF: NIST digital library of mathematical functions. Release 1.0.20 of 2018-09-1, 
2018). Our results show that math embedding holds much promise for similarity, analogy, 
and search tasks. However, we also observed the need for more robust math embedding 
approaches. Moreover, we explore and discuss fundamental issues that we believe thwart 
the progress in mathematical information retrieval in the direction of machine learning.
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Introduction

Mathematics is capable of explaining complicated concepts and relations in a compact, 
precise, and accurate way. Learning this idiom takes time and is often difficult, even to 
humans. The general applicability of mathematics allows a certain level of ambiguity in 
its expressions. Short explanations or mathematical expressions are often used to miti-
gate the ambiguity problem, that serve as a context to the reader. Along with context-
dependency, inherent issues of linguistics (e.g., ambiguity, non-formality) make it even 
more challenging for computers to understand mathematical expressions. Nevertheless, 
a system capable of automatically capturing the semantics of mathematical expressions 
would be suitable for improving several applications, from search engines to recommen-
dation systems.

Word embedding (Bengio et al. 2003; Mikolov et al. 2013a; Pennington et al. 2014) 
has made it possible to apply deep learning in natural language processing (NLP) with 
great effect. That is because embedding represents individual words with numerical vec-
tors that capture contextual and relational semantics of the words. Such representation 
enables inputting words and sentences to a neural network (NN) in numerical form. This 
allows the training of NNs and using them as predictive models for various NLP tasks 
and applications, such as semantic role modeling (He et al. 2017; Zhou and Xu 2015), 
word-sense disambiguation (Iacobacci et al. 2016; Raganato et al. 2017), sentence clas-
sification (Kim 2014), sentiment analysis (Socher et  al. 2013), coreference resolution 
(Lee et  al. 2017; Wiseman et  al. 2016), named entity recognition (Chiu and Nichols 
2016), reading comprehension (Clark and Gardner 2018), question answering (Liu et al. 
2018), natural language inference (Chen et al. 2017; Gong et al. 2018), document clas-
sification (Ruas et al. 2020), and machine translation (Devlin et al. 2014). The perfor-
mance of word embedding in NLP tasks has been measured and shown to deliver fairly 
high accuracy (Mikolov et al. 2013b; Pennington et al. 2014; Peters et al. 2018).

As math text consists of natural text as well as math expressions that exhibit linear 
and contextual correlation characteristics that are very similar to those of natural sen-
tences, word embedding applies to math text much as it does to natural text. Accord-
ingly, it is worthwhile to explore the use and effectiveness of word embedding in math 
language processing (MLP), math knowledge management (MKM), and math informa-
tion retrieval (MathIR). Still, math expressions and math writing styles are different 
from natural text to the point that NLP techniques have to undergo significant adapta-
tions and modifications to work well in math contexts.

While some efforts have started to apply word embedding to MLP, such as equation 
embedding (Gao et  al. 2017; Krstovski and Blei 2018; Yasunaga and Lafferty 2019; 
Greiner-Petter et al. 2019; Youssef and Miller 2019), there is a healthy skepticism about 
the use of machine learning (ML) and deep learning (DL) in MLP and MKM, on the basis 
that much work is still required to prove the effectiveness of DL in MLP. To learn how to 
adapt and apply DL in the MLP/MKM/MathIR context is not an easy task. Most applica-
tions of DL in MLP/MKM/MathIR rest on the effectiveness of word/math-term embedding 
(henceforth math embedding) because the latter is the most basic foundation in language 
DL. Therefore, it behooves us to start to look at the effectiveness of math embedding in 
basic tasks, such as term similarity, analogy, information retrieval, and basic math search, 
to learn more about their extension and limitations. More importantly, we need to learn 
how to refine and evolve math embedding to become accurate enough for more severe 
applications, such as knowledge extraction. That is the primary objective of this paper.
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Working with MathMLBen (Schubotz et al. 2018), a benchmark for converting math-
ematical LaTeX expressions into MathML, we discovered several fundamental problems 
that generally affect MLP/MKM/MathIR towards ML/DL solutions to learn semantics of 
mathematical expressions. For instance, the first entry of the benchmark,

is extracted from the English Wikipedia page about Van der Waerden’s theorem.1 With-
out further explanation, the symbols W, k, and � might have several possible meanings. 
Depending on which one is considered, even the structure of the formula may be differ-
ent. If we consider W as a variable, instead of a function, it changes the interpretation of 
W(2, k) to a multiplication operation. Learning connections, such as between W and the 
entity ‘Van der Waerden’s number’, requires a large specifically labeled scientific database 
that contains these mathematical objects.

To that effect, there is a fundamental need for datasets and benchmarks, preferably 
standard ones, to allow researchers to measure the performance of various math embedding 
techniques, and applications based on them, in an objective and statistically significant 
way, and to measure improvements and comparative progress. Such resources are abundant 
in the natural language domain but scarce in the MLP domain. Developing some of such 
datasets and benchmarks will hopefully form the nucleus for further development by the 
community to facilitate research and speed up progress in this vital area of research.

While the task of creating such resources for DL applications in MLP can be long and 
demanding, the examination of math embedding should not wait but should proceed right 
away, even if in an exploratory manner. Early evaluations of math embedding should ascer-
tain its value for MLP/MKM/MathIR and inform the process and trajectory of creating 
the corpora and benchmarks. Admittedly, until adequate datasets and benchmarks become 
available for MLP, we have to resort to less systematic performance evaluation and rely 
on performing preliminary tests on the limited resources available. The DLMF (DLMF 
2018) and arXiv.org preprint archive2 are good resources to start our exploratory embed-
ding efforts. The DLMF offers high quality, and the authors are familiar with its structure 
and content (which aids in crafting some of the tests). As for the arXiv collection, its large 
volume of mostly math articles makes it an option worth to investigate as well.

In this paper, we provide an exploratory investigation of the effectiveness and use of 
word embedding in MLP and MKM through different perspectives. First, we train word-
2vec models on the DLMF and arXiv with slightly different approaches for embedding 
math. Since the DLMF is primarily a handbook of mathematical equations, it does not 
provide extensive textual content. We will show that the DLMF trained model is appro-
priate to discover mathematical term similarities and term analogies, and to generate 
query expansions. We hypothesize that the arXiv trained models are beneficial to extract 
definiens, i.e., textual descriptive phrases for math terms. We examine the possible reasons 
why the word embedding models, trained on the arXiv dataset, does not present valuable 
results for this task. Besides, we discuss some of the reasons that we believe thwart the pro-
gress in MathIR in the direction of machine learning. In summary, we focus on five tasks 
(i) term similarity, (ii) math analogies, (iii) concept modeling, (iv) query expansion, and 
(v) knowledge extraction.

(1)W(2, k) > 2k∕k𝜀

1 https ://en.wikip edia.org/wiki/Van_der_Waerd en’s_theor em [Accessed Sep. 2019].
2 https ://arxiv .org/ [Accessed Sep. 2019].

https://en.wikipedia.org/wiki/Van_der_Waerden%e2%80%99s_theorem
https://arxiv.org/
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The paper is organized as follows. Next section offers a survey of the foundations and 
prior work related to word and math embedding. The "Mathematical Information Retrieval" 
section presents our experiments on the DLMF trained model: term similarity, math analo-
gies, concept modeling, and query expansion. In the section "Semantic Knowledge Extrac-
tion" we explore the arXiv trained model for knowledge extraction of mathematical terms. 
The "Overcoming Issues of Knowledge Extraction" section discusses potential concepts 
we believe are necessary to overcome the limitations of ML and DL algorithms in MLP/
MKM/MathIR tasks. Finally, the last section presents our conclusions and outlines future 
directions.

Foundations and related work

Understanding mathematical expressions essentially mean comprehending the semantic 
value of its internal components, which can be accomplished by linking its elements with 
their corresponding mathematical definitions. Current MathIR approaches (Kristianto et al. 
2014; Schubotz et al. 2016, 2017) try to extract textual descriptors of the parts that com-
pose mathematical equations. Intuitively, there are questions that arise from this scenario, 
such as (i) how to determine the parts which have their own descriptors, and (ii) how to 
identify correct descriptors over others.

Answers to (i) are more concerned in choosing the correct definitions for which parts 
of a mathematical expression are considered as one mathematical object (Kohlhase 2017; 
Youssef 2017; Schubotz et  al. 2018). Current definition-languages, such as the con-
tent MathML 3.03 specification, are often imprecise.4 For example, content MathML 3.0 
uses ‘csymbol’ elements for functions and specifies them as expressions that refer to a 
specific, mathematically-defined concept with an external definition.5 However, it is not 
clear whether W or the sequence W(2, k) (from  (1)) should be declared as a ‘csymbol’. 
Another example involves content identifiers, which MathML specifies as mathematical 
variables that have properties, but no fixed value.6 While content identifiers are allowed to 
have complex rendered structures (e.g., �2

i
 ), it is not permitted to enclose identifiers within 

other identifiers. Let us consider �i , where � is a vector and �i its ith element. In this case, 
�i should be considered as a composition of three content identifiers, each one carrying its 
own individualized semantic information, namely the vector � , the element �i of the vector, 
and the index i . However, with the current specification, the definition of these identifiers 
would not be canonical. One possible workaround to represent such expressions with con-
tent MathML is to use a structure of four nodes, interpreting �i as a function via a ‘csym-
bol’ (one parent ‘apply’ node with the three children vector-selector, � , and i ). However, 
ML algorithms and MathIR approaches would benefit from more precise definitions and a 
unified answer for (i). Most of the related work relies on these relatively vague definitions 
and in the analysis of content identifiers, focusing their efforts on (ii).

3 https ://www.w3.org/TR/MathM L3/ [Accessed Sep. 2019].
4 Note that OpenMath is another specification designed to encode semantics of mathematics. However, 
content MathML is an encoding of OpenMath and inherent problems of content MathML also apply to 
OpenMath (see https ://www.openm ath.org/om-mml/) [Accessed Sep. 2019].
5 https ://www.w3.org/TR/MathM L3/chapt er4.html#contm .csymb ol [Accessed Sep. 2019].
6 https ://www.w3.org/TR/MathM L3/chapt er4.html#contm .ci [Accessed Sep. 2019].

https://www.w3.org/TR/MathML3/
https://www.openmath.org/om-mml/
https://www.w3.org/TR/MathML3/chapter4.html#contm.csymbol
https://www.w3.org/TR/MathML3/chapter4.html#contm.ci
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Questions (i), (ii), and other pragmatic issues are already in discussion in a bigger con-
text, as data production continues to rise and digital repositories seem to be the future 
for any archive structure. A prominent example is the National Research Council’s effort 
to establish what they call the Digital Mathematics Library (DML),7 a project under the 
International Mathematical Union. The goal of this project is to take advantage of new 
technologies and help to solve the inability to search, relate, and aggregate information 
about mathematical expressions in documents over the web.

The advances most relevant to our work are the recent developments in word embedding 
(Mikolov et al. 2013b; Cho et al. 2014; Pennington et al. 2014; Bojanowski et al. 2017; 
Rudolph et al. 2017; Cer et al. 2018; Peters et al. 2018). Word embedding takes as input a 
text collection and generates a numerical feature vector (typically with 100 or 300 dimen-
sions) for each word in the collection. This vector captures latent semantics of a word from 
the contexts of its occurrences in the collection; in particular, words that often co-occur 
nearby tend to have similar feature vectors (where similarity is measured by the cosine 
similarity, the Euclidean distance, etc.).

Recently, more and more projects try to adapt these word embedding techniques to learn 
patterns of the correlations between context and mathematics. In the work of Gao et  al. 
(2017), they embed single symbols and train a model that can discover similarities between 
mathematical symbols. Similarly to this approach, Krstovski and Blei (2018) use a vari-
ation of word embedding (briefly discussed in the "Word Embedding" section) to repre-
sent complex mathematical expressions as single unit tokens for IR. In 2019, Yasunaga 
and Lafferty (2019) explore an embedding technique based on recurrent neural networks to 
improve topic models by considering mathematical expressions. They state their approach 
outperforms topic models that do not consider mathematics in text and report a topic 
coherence improvement of 0.012 over the LDA8 baseline. Equation embedding, as in Gao 
et al. (2017); Krstovski and Blei (2018); Yasunaga and Lafferty (2019), present promising 
results for identifying similar equations and contextual descriptive keywords.

In the following, we will explore in more detail different techniques of word embedding 
("Word Embedding" section). Likewise, we will examine different styles of adapting the 
process for math embedding ("Math Embedding" section).

Word embedding

In this paper, we apply word2vec (Mikolov et al. 2013b) on the DLMF (DLMF 2018) and 
on the collection of arXiv.org pre-print archive9 documents for generating embedding vec-
tors for various math symbols and terms. The word2vec technique computes real-valued 
vectors for words in a document using two main approaches: skip-gram and continuous 
bag-of-words (CBOW). Both produce a fixed-length n-dimensional vector representation 
for each word in a corpus. In the skip-gram training model, one tries to predict the context 
of a given the word, while CBOW predicts a target word given its context. In word2vec, 
context is defined as the adjacent neighboring words in a defined range, called a sliding 
window. The main idea is that the numerical vectors representing similar words should 

7 https ://www.nap.edu/read/18619  [Accessed Sep. 2019].
8 Latent Dirichlet Allocation.
9 https ://arxiv .org/ [Accessed Sep. 2019].

https://www.nap.edu/read/18619
https://arxiv.org/
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have close values if the words have similar context, often illustrated by the king–queen 
relationship

where �t represents the vector for the token t.
Extending word2vec’s approaches, Le and Mikolov (2014) propose Paragraph Vec-

tors (PV), a framework that learns continuous distributed vector representations for any 
size of text segments (e.g., sentences, paragraphs, documents). This technique alleviates 
the inability of word2vec to embed documents as one single entity. This technique also 
comes in two distinct variations: Distributed Memory (DM) and Distributed Bag-of-Words 
(DBOW), which are analogous to the skip-gram and CBOW training models, respectively.

Other approaches also produce word embedding given a training corpus as input, such 
as fastText (Bojanowski et al. 2017), ELMo (Peters et al. 2018), and GloVe (Pennington 
et al. 2014). The choice for word2vec for our experiments is justified because of its imple-
mentation ease, training speed using modest computing resources, general applicability, 
and robustness in several NLP tasks (Iacobacci et al. 2015, 2016; Li and Jurafsky 2015; 
Mancini et  al. 2017; Pilehvar and Collier 2016; Ruas et  al. 2019). Additionally, in fast-
Text they propose to learn word representations as a sum of the n-grams of its constituent 
characters (sub-words). The sub-word structure would incorporate a certain noise10 to our 
experiments. In ELMo, they compute their word vectors as the average of their charac-
ters representations, which are obtained through a two-layer bidirectional language model 
(biLM). This would bring even more granularity than fastText, as they consider each char-
acter in a word as having their own n-dimensional vector representation. Another factor 
that prevents us from using ELMo, for now, is its expensive training process.11 Closer to 
the word2vec technique, GloVe (Pennington et  al. 2014) is also considered, but its co-
occurrence matrix would escalate the memory usage, making its training for arXiv not pos-
sible at the moment. We also examine the recently published Universal Sentence Encoder 
(USE) (Cer et al. 2018) from Google, but their implementation does not allow one to use a 
new training corpus, only to access its pre-calculated vectors based on words. We also con-
sidered BERT (Devlin et al. 2019) with its recent advances of Transformer-based architec-
tures in NLP as an alternative to word2vec. However, incorporating BERT and other Trans-
former-based architectures would require a significant restructuring of the core idea of our 
work. BERT is pre-trained in two general tasks that are not directly transferable to math-
ematics embeddings: Masked Language Modelling (MLM) and Next Sentence Prediction 
(NSP). Since this work is an exploratory investigation of the potential of word embedding 
techniques in MLP and MKM, we gave preference to tools that could be applied directly. 
Nonetheless, since some of our results are promising, we plan to include Transformer-
based systems, such as BERT (Devlin et al. 2019), XLNet (Yang et al. 2019), RoBERTa 
(Liu et al. 2019), and Transformers-XL (Dai et al. 2019), in future work.

The overall performance of word embedding algorithms has shown superior results in 
many different NLP tasks, such as machine translation (Mikolov et al. 2013b), relation sim-
ilarity (Iacobacci et al. 2015), word sense disambiguation (Camacho-Collados et al. 2015), 
word similarity (Neelakantan et al. 2014; Ruas et al. 2019), document classification (Ruas 
et al. 2020), and topic categorization (Pilehvar et al. 2017). In the same direction, we also 

(2)�king − �man ≈ �queen − �woman

10 Noise means, the data consists of many uninteresting tokens that affect the trained model negatively.
11 https ://githu b.com/allen ai/bilm-tf [Accessed Feb. 2020].

https://github.com/allenai/bilm-tf


Scientometrics 

1 3

explore how well mathematical tokens can be embedded according to their semantic infor-
mation. However, mathematical formulae are highly ambiguous and, if not properly pro-
cessed, their representation is jeopardized.

Math embedding

Recently, Krstovski and Blei (2018) proposed a variation of word embedding for math-
ematical expressions. Their main idea relies on the construction of a distributed repre-
sentation of equations, considering the word context vector of an observed word and its 
word-equation context window. They treat equations as single-unit words (EqEmb), which 
eventually appears in the context of different words. They also try to explore the effects of 
considering the elements of mathematical expressions separately (EqEmb-U). In this sce-
nario, mathematical equations are represented using a Syntax Layout Tree (SLT) (Zanibbi 
et  al. 2016b), which contains the spatial relationship between its symbols. While they 
present some interesting findings for retrieving entire equations, there is little discussion 
about the vectors representing equation units, i.e., EqEmb-U embedding, and how they are 
described in their model. The word embedding techniques seem to have the potential for 
semantic distance measures between complex mathematical expressions. However, they 
are not appropriate for extracting the semantics of identifiers separately, indicating that 
the problems of representing mathematical identifiers are tied to more fundamental issues, 
which we address in the "Overcoming Issues of Knowledge Extraction" section.

Considering the equation embedding techniques in Krstovski and Blei (2018), we devise 
three main types of mathematical embedding, nameley Mathematical Expressions as Sin-
gle Tokens, Stream of Tokens, and Semantic Groups of Tokens.

Mathematical Expressions as Single Tokens: EqEmb (Krstovski and Blei 2018) uses 
entire mathematical expressions as one token. In a one-token representation, the inner 
structure of the mathematical expression is not considered. For example, Eq. (1) is rep-
resented as one single token t1 . Any other expression, such as W(2, k) in the surround-
ing text of  (1), is an entirely independent token t2 . Therefore, this approach does not 
learn any connections between W(2, k) and (1). However, Krstovski and Blei (2018) has 
shown promising results for comparing mathematical expressions with this approach.
Stream of Tokens: As an alternative to embedding mathematical expressions as a single 
token, one can also represent an expression through a sequence of its inner elements. For 
example, considering only the identifiers in Eq. (1), it would generate W, k, and � as a 
sequence/stream of tokens. This approach has the advantage of learning all mathematical 
tokens. However, this method also has some drawbacks. Complex mathematical expres-
sions may lead to long chains of elements, which can be especially problematic when 
the window size of the training model is too small. Naturally, there are approaches to 
reduce the length of chains. Gao et al. (2017) use a CBOW and embed all mathematical 
symbols, including identifiers and operands, such as + , − or variations of equalities = . 
Yasunaga and Lafferty (2019) do not cut out symbols, but train their model on the entire 
sequence of tokens that the LaTeX tokenizer generates. Considering Eq.  (1), it would 
result in a stream of 13 tokens. They use a long short-term memory (LSTM) architecture 
to overcome this issue and further limit chains length to 20–150 tokens. Usually, in word 
embedding, such behaviour is not preferred since it increases the noise in the data.
In the  "Mathematical Information Retrieval" section, we use this stream of tokens 
approach to train our model on the DLMF without any filters. Thus, Eq. (1) generates 
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all 13 tokens. In the "Overcoming Issues of Knowledge Extraction" section, we show 
another model trained on the arXiv collection, which uses a stream of mathematical 
identifiers and cut out all other expressions, i.e., in case of (1), we embed W, k, and � . 
We presume this approach is more appropriate to learn connections between identifiers 
and their definiens. We will see later in the paper that both of our models trained on 
math embedding is able to detect similarities between mathematical objects, but does 
not perform well detecting connections to word descriptors. In the scenario of identify-
ing definiens, for mathematical objects, we consider close relations between mathemati-
cal symbols as noise. To mitigate this issue, we only work with mathematical identifiers 
and not any other symbols or structures for our experiments on the arXiv collections. 
Note that, since we focused on similarities for the experiments on the DLMF dataset, we 
preferred to not filter out any tokens for the DLMF model.
Semantic Groups of Tokens: The third approach of embedding mathematics is only 
theoretical and concerns the problem mentioned above related to the vague definitions 
of identifiers and functions in a standardized format (e.g., MathML). As previously dis-
cussed, current MathIR and ML approaches would benefit from a basic structural knowl-
edge of mathematical expressions, such that variations of function calls (e.g., W(r, k) and 
W(2, k) ) can be recognized as the same function. Instead of defining a unified standard, 
current techniques use their ad-hoc interpretations of structural connections, e.g., �i is one 
identifier rather than three (Schubotz et al. 2017, 2018). We assume that an embedding 
technique would benefit from a system that can detect the parts of interest in mathematical 
expressions before any training processes. However, such a system still does not exist.

To investigate the situations described in the sections  "Word Embedding" and "Math 
Embedding", we applied word2vec on two different scenarios, one focusing on MathIR 
(DLMF) and the other on semantic knowledge extraction (arXiv), i.e., identifying definiens 
for math objects. To summarize our decisions, for the DLMF and arXiv, we choose the 
stream of token embedding technique, i.e., each inner token is represented as a single 
n-dimensional vector in the embedding model. For the DLMF (section "Mathematical 
Information Retrieval"), we embed all inner tokens, while for the arXiv (section "Semantic 
Knowledge Extraction"), we only embed the identifiers.

Mathematical information retrieval

To perform the MathIR experiments on the DLMF using word and math-term embedding, 
we trained word2vec on the DLMF. Considerable preprocessing of the corpus had to per-
formed: new algorithms and software for sentence-segmentation (in math documents) had 
to be developed, and the Part-of-Math tagger12 (PoM tagger) (Youssef 2017) was adapted 
and used for math tokenization. For preprocessing the DLMF, we separated the content 
from annotations and metadata, and segmented all the contents into individual sentences 
(using our sentence-segmentation algorithm) since in the version of word2vec embedding 
that we used, the tokenization worked on a sentence by sentence basis. Afterwords, word-
2vec was applied using the skip-gram model, a window size of 5, dimension of 100, and 

12 A tokenizer for LaTeX expressions that tags the tokens with additional information similar to Part-of-
Speech taggers in NLP.
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minimum word count of 3. These hyperparameter values were obtained after considerable 
experimentation with different values of the window size, vector dimension, and mini-
mum word count. We selected the values that resulted in best performance (as evaluated 
by direct observations of the outcome of the example similarity/analogy queries that are 
reported on in this section).

Term similarity

Table 1 presents some initial findings when searching for the 20 most similar words for 
each of the following four math terms in the DLMF database: ‘transform’, ‘Fourier’, ‘Bes-
sel’, and ‘hypergeometric’. Identifying similar words (to a given keyword) can: 

1. Serve as an indicator of the semantics-capturing capabilities of the underlying word 
embedding technique;

2. Enrich search queries (by combining the keyword with its semantic/related neighbors 
into an expanded query);

3. Find related concepts that could not be found as efficiently and conveniently as through 
embedding-based word similarity.

The context of the DLMF is very specific. Hence, the name Fourier (as well as other 
names, such as Bessel) only appears in a narrow context, primarily as descriptive linguis-
tic modifiers of mathematical constructs such as ‘transforms’, ‘series’ and ‘operators’. 

Table 1  Keywords and their 
top-20 most similar words, by the 
Euclidean distance

Transform Fourier Bessel hypergeometric

transform Fourier Bessel hypergeometric
Mellin power Airy generalized
Transform Hilbert Hankel confluent
Transforms Heun modified multivariate
extend Maclaurin Struve generating
By Stieltjes Modified Olver’s
defining radii Generalized Lauricella’s
Stieltjes joining Spherical Heun
Hilbert summable Coulomb Appell
allows noninteger Many gamma
convolution Transform Inverse bilateral
standard Laurent products basic
rise Every Kelvin elementary
group trapezoidal Mathieu Gauss
us geometric spheroidal Kummer
summable rules Weber Inverse
transformation iterative spherical Many
ellipsoids Lagrange gamma plays
solve vacuum Lamé Coulomb
Since construction Contiguous beta
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The results in Table 1 show that many of the returned hits are quite what a mathematician 
would expect (especially hits for the words ‘Bessel’ and ‘hypergeometric’ in columns 3 
and 4), but at the same time, certain similar/related terms failed to be returned. For exam-
ple, considering the hits for ‘transform’ (1st column of the table), we observe:

– The top-20 hits showed some synonyms (e.g., ‘transformation’) and related terms like 
‘convolution’, ‘Mellin’, and ‘Hilbert’ (the latter two are due probably to ‘Mellin trans-
form’ and ‘Hilbert transform’), which are all good;

– The top-20 hit list failed to include ‘Fourier’, despite the fact that it is arguably the most 
famous transform;

– As expected, certain irrelevant words (e.g., ‘by’, ‘allows’) matched high because many 
of them are frequent stopwords. However, not all general stopwords should be dis-
missed, e.g., ‘almost everywhere’ has major significance in math, but what constitutes 
stopwords in math should be considered carefully.

Also, looking at the 2nd column, the hits of words similar to ‘Fourier’ include many other 
terms that are truly related to the keyword ‘Fourier’, where in several instances (e.g., 
‘Stieltjes’ and ‘Hilbert’), the similarity could perhaps be attributed to the fact there are trans-
forms associated with those terms. Unlike in the previous column, the word ‘Transform’ 
rightly appears in the top-20 similar words of ‘Fourier’. This lack of symmetry, though 
understandable, shows that similarity, or rather dissimilarity, (based on word2vec embed-
ding), is not a measure in the mathematical sense, which can be a serious shortcoming. 
To be sure, the lack of symmetry in term similarity is not an issue in information retrieval 
carried out by human users, if what is represented allows users to express queries whose 
correspondence with language usage statistics in a corpus is strong. Solid textual retrieval 
systems themselves often do not represent word/conceptual semantics in any direct sense. 
However, in certain situations, such as in end-to-end systems with no humans in the loop, 
where the non-symmetry (X is similar to Y but Y may not be similar to X) makes the behav-
ior of such systems unpredictable (under the mercy of the right choice of the query term) 
and thus less than desirable. That being said, the cautionary concern over the lack of sym-
metry is mostly speculative and hypothetical at this time, and only future experimentation 
and applications will tell whether or not the non-symmetry is a serious problem.

These four similarity exercises are too few to draw any solid conclusions up to this 
point, but they illustrate the drawbacks and the promises of embedding for MLP, and press 
the need for benchmarks to achieve generalizable, statistically significant results.

Remarks about the distance measures used: In the similarity and analogy search 
experiments that we ran and present in this section, we considered different similarity 
measures and distance measures, such as cosine similarity and the Euclidean distance. 
Since the optimization of the best measure/distance is not of primary concern in this paper, 
and to save on space, we present only the results corresponding to the best measure. For 
example, in Table 1, we present the results where the Euclidean distance was used because 
it gave the best results, whereas in Tables 2, 3, 4, 5 and 6, we use cosine similarity because 
it yielded the best outcome.

Term analogy

Finding mathematical analogies is a powerful tool for crafting queries for analogy search, 
which cannot be performed by mere keyword search. Here are some examples: ‘x’ is to 
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Table 2  Analogies of the form: Find Term where Term is to X what Y is to Z. The similarity measure is 
cosine similarity

Top-10 best Terms where

Term is to ‘complex’ what
x is to ‘real’:

Term is to x what
‘complex’ is to ‘real’:

Term is to z what
‘real’ is to ‘complex’:

x x z
z z x
∖left( ∖left( 2
∖right) ∖right) t
, , –
1 1 1
= = ∖right)
– – n
∖pi ∖pi ∖pi
_ _ +

Term is to ‘ sin ’ what  
‘ cosh ’ is to ‘ cos’:

Term is to ‘ sin ’ what  
‘ arccos ’ is to ‘ cos’:

Term is to ‘ exp ’ what 
‘ arccos ’ is to ‘ cos’:

cosh arccos arccos
sinh arcsinh arccosh
sin arctan arctan
tanh arctanh arctanh
csch arccosh arcsinh
cot arcsin exp
coth arccsc arcsin
mt arcsec erfc
zs arccoth sign
sech arccsch xyz

Table 3  The words/lemmas most similar to the centroid of ‘Fourier’ and ‘Mellin’, by cosine similarity

Top-20 Most Similar Words for Centroid of {‘Fourier’, ‘Mellin’} Top-10 Most Similar Lemmas for 
Centroid of {‘Fourier’, ‘Mellin’}

Mellin Stieltjes Mellin
Fourier Leading Fourier
Hilbert convolution Hilbert
Laplace many-body Laplace
Transform summable Transform
Kontorovich–Lebedev ease Kontorovich–Lebedev
transform collections products
products FFT Stieltjes
Transforms us Leading
transforms Convergence convolution
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‘real’ what ‘z’ is to ‘complex’, ‘cos’ is to ‘cosh’ what ‘sin’ is to ‘sinh’, ‘cos’ to ‘arccos’ 
is what ‘log’ is to ‘exp’, ‘arcsin’ is to ‘sin’ what ‘integral’ is to ‘derivative’, and so on. To 
illustrate the use of analogies, consider this simple example of a math student who has 
taken courses on real analysis and is just starting to learn complex analysis. That student 
is likely curious to know the common notation for a complex variable, as the counterpart 
of ‘x’ being the common notation for a real variable. In plain English, the student can for-
mulate that information need as a query/question of the form: What is to ‘complex’ as ‘x’ 
is to ‘real’? This query is essentially the aforementioned king–queen example (2) from the 
"Word Embedding" section with an unknown variable �unknown . Thus, with powerful word 
embedding, the unknown term being searched for satisfies the following relation

or equivalently

where �t is the embedding vector of term t. Accordingly, to find the unknown term, one has 
to find the closest vectors to the vector �x + �complex − �real , and retrieve the correspond-
ing words. Ideally, with good embedding, the unknown term should be the top match or at 
least among the top few matches. Note that in the equation above, the vector on the right 
hand side of the approximation is the sum of the vector for the known term (i.e., first box) 

(3)�unknown − �complex ≈ �x − �real

(4)�unknown ≈ �x + �complex − �real

Table 4  Similarities to the 
centroids of 4 subsets of words, 
by cosine similarity

Top-20 Most Similar Words for the Centroid of

{‘se’, ‘ce’} {‘Si’, ‘Ci’} {‘Ai’, ‘Bi’} {‘sin’, ‘cos’, ‘tan’}

ce Ci Bi sin
se Si Ai cos
fe Ei envAi tan
ge nt envBi cot
Se ez Hi cosh
Fe sec Gi sinh
Ce Arctan envelope tanh
Ge xe Airy uv
Io xM xe Arctanh
Gey Shi 1535 csch
Ko Gi Chi pm
me Chi ’ si
Ke ie 54703 Ein
Fey Ein Shi ir
Ds zn implicitly Arccsc
Dc 6144 derivative sec
mz Cin Ein Arccosh
Ie xJ 1797 coth
Me arccot ie csc
inh 1797 Ei rh
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and the vector (in the second box) that captures the relation between the known and the 
unknown terms. We will call the second-box vector the relation vector.

We tested this analogy capability using several analogy queries, as shown in Table 2 
where Term stands for the unknown term being searched for. The query illustrated above 
about the complex variable notation was formulated in two different flavors (top half of 
the first two columns), and, for extra measure, the question was modified to search for 
the real variable given the complex variable (top half of the third column); the purpose 
of varying the question is to test for robustness. Examining the results in the table, one 
can observe the following:

– In all three queries, the desired answer was the second topmost match, which, though 
not ideal, is quite impressive.

– The topmost match for the unknown term is, interestingly, the known term, in all 
three queries. That indicates that the relation vector is, at least in these queries, of 
very small magnitude. This could result from one of two factors: (1) the vectors of 
‘complex’ and ‘real’ are quite similar due to the strong inter-relatedness, making 
their difference quite small, or (2) those two vectors are of small magnitude, causing 
their difference to be small as well. The 1st factor is mitigated when the relation is 
between two disparate (i.e., not so correlated) concepts, while the 2nd factor can be 
remedied by taking normalized embedding, resulting in unit-length vectors.

Table 5  Similarities to the 
centroids of three subsets of 
words, by cosine similarity

Top-20 Most Similar Words for the Centroid of

{‘Legendre’, ‘Hyper-
geometric’}

{‘Bessel’ , ‘Struve’} {‘Legendre’, ‘Hyper-
geometric’, ‘Bessel’, 
‘Struve’}

Legendre Bessel Struve
Hypergeometric Struve Bessel
Generalized Kelvin Generalized
Struve Hankel Hypergeometric
Gamma Modified Weber
Generating Weber Contiguous
dilated Noninteger Modified
Associated Airy Gamma
Arguments Spherical Legendre
Confluent Contiguous Kelvin
Products Anger–Weber Hankel
Ferrers Many Associated
Contiguous Generalized Anger–Weber
Number-Theoretic Inverse Many
Incomplete Half-Integer Noninteger
Parabolic Functions-Real Generating
Kind Functions-Complex Confluent
Mittag–Leffler Gamma Spherical
Function Incomplete Incomplete
Elementary gamma Arguments
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The bottom half of Table 2 shows the results for three other analogy queries. The first query 
tests for analogy between trigonometric (sin, cos) and hyperbolic functions (sinh, cosh) , 
the second query tests for inverse function relation in trigonometry, i.e., analogy between 
(sin, arcsin) and (cos, arccos) , and the third query also tests for inverse function relation 
but this time between functions from different areas (one pair from trigonometry, namely, 
(cos, arccos) , and the other pair being (exp, log) ). One can observe the following about the 
results of those queries:

– For the first 2 queries, we observe the same as above: the desired match ranks second, 
and the topmost match is (wrongly) identical to the known term;

– For the third query, the desired match is not even in the top-10 list.

All mentioned observations, but especially the last one, point to the urgent need for mass 
testing on large benchmarks, to assess the power and limitations of embedding in MLP 
applications accurately, and for better diagnosis of shortcomings so that more targeted rem-
edies or adjustments can be made. For example, is it the case that, when analogies are 
being drawn from two rather different areas, the analogy search is not as accurate? The 
preliminary tests performed in this paper do not give us a strong basis for answering such 
a question, but further tests on large benchmarks will almost certainly provide an answer.

Table 6  The words most similar 
to the weighted centroids of 
{‘Euler’, ‘Gamma’}, by cosine 
similarity. Note that certain 
matches like ‘:sec:LA.F2.DC’ 
are obviously wrong. Those are 
tokenizer artifacts generated by 
the used tokenizer and will be 
fixed in future versions

Top-20 Most Similar Words to the Centroid of {‘Euler’, ‘Gamma’} 
using different weights w1 and w2

(w1,w2) = (1, 0) (w1,w2) = (1, 1) (w1,w2) = (1, 2)

Euler Euler Euler
Bernoulli LA4 Gamma
belonging Bernoulli Beta
cyclotomic Numbers Generating
polynomials exponentials Periodic
splines Periodic Parabolic
Numbers splines Cylinder
LA4 Beta LA4
generating belonging exponentials
Stirling Gamma Number-Theoretic
:sec:LA.F2.DC 15-point Generalized
quotients :sec:LA.F2.DC Unmodified
Splines 5-point Numbers
1851 Curve Modular
Genocchi cyclotomic Exponential
Hermite Cylinder Toroidal
Factorization generating Trigonometric
Computer Factorization Elementary
exponentials Gauss Contiguous
15-point Generating Associated
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Concept modeling and query expansion

Many concepts can be described by a (sub)set of keywords that capture different aspects of 
the concept, and serve as ‘axes’ that characterize the concept. For example, the concept of 
‘dog’ can be described (at least partially) by keywords like ‘animal’, ‘domestic’, ‘friendly’, 
‘loyal’, etc. Note that when a concept has no name, the characterizing keywords form the 
fundamental pieces of an implicit definition of the unnamed concept. In any case, numeri-
cal modeling of a concept can be achieved by taking the centroid of the keywords that char-
acterize the concept, i.e., by taking the average of the embedding vectors of the characteriz-
ing keywords. The centroid can also be viewed as capturing the commonalities between the 
concepts represented by the component keywords. We tested the centroid-based concept 
modeling technique using several examples. The results are shown in Tables 3, 4, and 5.

In Table  3, we show the most similar words to the centroid of {‘Fourier’, ‘Mellin’}. 
Observe that although ‘transform’ did not appear in the top-20 similarity matches of ‘trans-
form’ in Table  1, it appears in the centroid matches, probably because ‘transform’ is a 
central commonality between ‘Fourier’ and ‘Mellin’. This illustrates the conceived power 
of this simple centroid-based technique. By the same token, and indirectly through ‘trans-
form’, other transforms appear in the top list of centroid matches, such as ‘Laplace’, ‘Hil-
bert’, ‘Kontorovich–Lebedev’, and so on.

Tables 4 and 5 show more examples, where the top-20 matches are populated by mostly 
relevant terms. One striking yet unexplainable observation is that the matches tend to be 
of lengths comparable to those of the component keywords of the centroid. For example, 
nearly all the matches for the centroid of {‘se’, ‘ce’} in Table 4 have lenght two characters 
and the remaining matches of three characters. Likewise, in Table 5, the top-20 matches for 
the centroid of {‘Bessel’ , ‘Struve’} are the names of various similar functions, where the 
names are of length comparable to (or larger than) that of the two component keywords, 
even though the one-letter names of specific Bessel functions (e.g., I, J, and K) should be 
on/near the top of the list. In future work, this phenomenon will be investigated further, 
and, if length-bias is confirmed, length-agnostic embedding techniques will be sought.

Weighted centroids

The notion of centroids is flexible enough to allow the user to put more, or less, emphasis 
on certain aspects/keywords in the component list, so as to represent a different concept 
or a different gradation of a concept. This is achieved through weighted centroids, where 
more emphasis is put by giving a larger weight to the corresponding keyword, and vice 
versa. One can even de-emphasize certain aspects/dimensions/keywords by giving them 
negative numerical weights.

Table 6 illustrates the power of weighted centroids. In the 1st column, by giving weight 
0 to ‘Gamma’, effectively finding the words similar to ‘Euler’, the search failed to uncover 
the relevant Beta (function) in the top 20 hits. By including ‘Gamma’ with equal weight as 
‘Euler’ (2nd column), ‘Beta’ was returned (as the 7th hit). Disappointingly, ‘Gamma’ itself 
was not returned, and that is because the vector of ‘Euler’ has a relatively much larger mag-
nitude than the vector of ‘Gamma’. This points to the need to use normalized embedding 
vectors instead. In the third column, more weight is given to ‘Gamma’ than to ‘Euler’; as 
a result, two things were observed: (1) ‘Gamma’ is in the hit list and near the top, and (2) 
‘Beta’ now ranks higher than when both query words are of equal weight.
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Weighted centroids show much promise and potential, and call for further studies to 
determine techniques for systematically selecting weights to meet certain objects. One of 
the applications of centroids, whether weighted or unweighted, is query expansion for a 
more effective search. This is addressed in the next subsection.

It should be noted that weighted averaging is a commonly used technique, and was 
applied in search fairly early on, as in the Rocchio algorithm in IR used as a tf-idf vector-
based feedback approach to revise the user’s search query to improve the search outcome 
(Rocchio 1971). Although both the Rocchio algorithm and our weighted centroid are vec-
tor based, they differ in several respects. Our approach is embedding based, and thus car-
ries more contextual/relational semantics than tf-idf based vectors tend to do, and it applies 
to searching for individual (similar) words (and phrases), rather than just coarser search 
(for documents), leading to more applications than conventional IR.

Query expansion

One limitation of keyword/keyphrase search is that it is based on the literal occurrence of 
the terms used in the query, regardless of the underlying semantics. Incorporating a syno-
nym search does not eliminate this deficiency. The integrated semantic notions represented 
by conjoining several characterizing keywords cannot be identified by the mere occurrence 
of those keywords in a document. Rather, it is more effective first to determine new key-
words that pertain very closely to the concept represented/shared by certain characterizing 
keywords, and then add those new keywords to the original keywords to form an expanded 
query. In other terms, it is significantly more effective to explicitize the concept that is 
underlying a set of keywords into new keywords to add to the search query.

This query expansion process is quite straightforward thanks to the embedding-based 
centroid concept introduced earlier in this section. Specifically, the query expansion is 
done through the following steps: 

1. Embedding: Retrieve the embedding vectors of the keywords of the query;
2. Centroid: Compute the (weighted) centroid C of those vectors;
3. Similarity Search: Find the top N most similar vectors to C (N is preset);
4. Expansion Keywords: Retrieve the words corresponding to those vectors;
5. Expansion-keywords Selection [optional]: In human-in-the-middle situations, where 

the user has domain expertise, the user selects from the list of the previous step the 
words that truly pertain to the keywords of the query;

6. Expanded Query: Add the words of the previous step to the keywords of the original 
query, conjoined by the OR or the AND boolean operator.

We performed several preliminary tests of query expansion on 4–5 queries using DLMF 
and its math search capability and following the steps outlined above. We carefully selected 
the expansion keywords using our familiarity with DLMF and Special Functions. Table 7 
shows the original queries and the expanded queries, and reports the recall as P-Recall and 
E-Recall, corresponding to page search and equation search, respectively. The recall of the 
OR-expanded queries increases and this increase indicates that this expansion is not super-
fluous, i.e., the new keywords are not subsumed by the original query, but it is a judicious 
expansion that helps the user uncover new, relevant hits that the original query could not 
match.
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Note that there are applications where users have domain expertise for a judicious selec-
tion of expansion keywords. For example, frequently, users of math search are domain 
experts in their disciplines. Another example is patent search, where patent examiners are 
domain experts who search for prior art through a sequence of queries that they evolve by 
expansion. Our proposed query expansion method suggests valuable keywords to add, and 
the patent examiners have the expertise to wisely choose from the suggested keywords to 
form better queries for more effective and more efficient search of prior arts. This method 
has already been tested by the US Patent & Trademark Office (US PTO) and has shown 
good results (Krishna et al. 2019).

The expansion is not limited to an OR-expansion for an increased recall, but it can sug-
gest valuable new keywords to intersect with the old keywords using AND-expansion, 
leading to better precision.

Another use of weighted centroids is relevance ranking, especially in search systems 
that do not allow the user to weight the query keywords. For example, to give more, or less, 
emphasis to some keywords in the query, one can compute an appropriately weighted cen-
troid of the query keywords. The new keywords, resulting from Step 3 of the algorithm, cap-
ture the inherent emphasis. By expanding the original query with those properly biased new 
keywords, the hits will be ranked in a way that reflects that bias, leading to better relevance 
ranking and higher user satisfaction. Of course, further, more extensive, and more systematic 
study of this novel form of query expansion is needed and will be included in future work.

Note that query expansion has received considerable attention (Vechtomova 2009) over 
the years, and some of the authors of this paper have addressed that topic in the context 
of math search (Youssef 2005; Al-Tamimi and Youssef 2007) and incorporated their find-
ings and techniques into the deployed math search of the Digital Library of Mathematical 

Table 7  Query Expansion Using Centroids and Similarity

The reported recalls are derived from running the queries on the DLMF (DLMF 2018) in two modes: (1) 
page search (for P-Recall) and (2) equation search (for E-Recall)

Query P-Recall E-Recall

Original Query: Bessel 195 858
1st Expansion: Bessel OR Airy 234 1061
2nd Expansion: Bessel OR Spherical 220 909
3rd Expansion: Bessel OR Airy OR Spherical 259 1112

Original Query: Fourier OR Mellin 84 54
1st Expansion: Fourier OR Mellin OR transform 189 90
2nd Expansion: Fourier OR Mellin OR transform OR 

Convolution
192 92

Original Query: Euler 381 1513
Original Query: Gamma 220 879
“Inspired” Query: Beta 179 543
1st Expansion: Euler OR Gamma 381 1515
2nd Expansion: Euler OR Beta 420 1817
3rd Expansion: Euler OR Gamma OR Beta 420 1819
4th Expansion: Euler AND Gamma 220 877
5th Expansion: Euler AND Beta 79 543
6th Expansion: Euler AND Gamma AND Beta 62 38
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Functions (DLMF 2018). For example, in math search, we make use of not only thesau-
rus-based query expansions, but we also turn expression queries into phrase queries with 
stretchable proximity operators to allow for intervening symbols in the matches even if 
those symbols are missing from the query expression. That way, a query “ sin2 + cos2 ” will 
match an expression like “ sin2 x + cos2 x”.

More recently, embedding-based query expansion started to receive some attention 
(Kuzi et al. 2016; Almasri et al. 2016). However, weighted-centroid based query expansion 
is novel, and no study of it has been done, either in general search or in the context of math 
search. Of course, query expansion can take other forms beyond synonyms and keywords-
implied latent concepts, using language models and topic models (Croft et al. 2009). Our 
weighted-centroid based query expansion should not be viewed as an alternative to those 
other query expansion techniques or math-query expansion methods. Instead, it can be syn-
ergistically combined with all those query expansion methods.

Accordingly, in our future work, we will elaborate, study and evaluate weighted-cen-
troid based query expansion, on its own as well as in combination with other query expan-
sions methods.

Semantic knowledge extraction

In the "Term Analogy" section, we analyzed the effectiveness of term similarity, term 
analogy, and query expansion when searching for entire mathematical expressions instead 
of descriptive keywords. To further investigate the MathIR task, we also explored how 
descriptive phrases for mathematical objects can be used to improve our results. Extract-
ing definiens of mathematical objects from a textual context is a common task in MathIR 
(Pagel and Schubotz 2014; Schubotz et al. 2016; Zanibbi et al. 2016a; Schubotz et al. 2017; 
Kristianto et al. 2017) that often provides a gold dataset for its evaluation. Since the DLMF 
does not provide extensive textual information for its mathematical expressions, we con-
sidered an alternative scenario in our analysis, one in which we trained a second word2vec 
model on a much larger corpus composed of articles/papers from the arXiv collection. In 
this section, we compare our findings against Schubotz et al. (2017)’s approach. We apply 
variations of a word2vec (Mikolov et al. 2013b) and paragraph vectors (Le and Mikolov 
2014) implementation to extract mathematical relations from the arXMLiv dataset (Ginev 
2018) (i.e., an HTML collection of the arXiv.org preprint archive,13), which is used as our 
training corpus. We also consider the subsets that do not report errors during the document 
conversion (i.e., no_problem and warning) which represent 70% of archive.org. We make 
the code, regarding our experiments, publicly available.14

Evaluation of math‑embedding‑based knowledge extraction

As a pre-processing step, we represent mathematical expressions using the MathML15 
notation. First, we replace all mathematical expressions with the identifiers sequence it 
contains, i.e., W(2, k) is replaced by ‘W k’. We also add the prefix ‘math-’ to all identifier 

13 https ://arxiv .org/ [Accessed Feb. 2020].
14 https ://githu b.com/ag-gipp/math2 vec [Accessed Feb. 2020].
15 The source TeX file has to use mathematical environments for its expressions.

https://arxiv.org/
https://github.com/ag-gipp/math2vec
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tokens to distinguish between textual and mathematical terms later. Second, we remove all 
common English stopwords from the training corpus. Finally, we train a word2vec model 
(skip-gram) using the following hyperparameters:16 vector size of 300 dimensions, a win-
dow size of 15, minimum word count of 10, and a negative sampling of 1E − 5 . We justify 
the hyperparameter used in our experiments based on previous publications using similar 
models (Mikolov et  al. 2013a; Le and Mikolov 2014; Lau and Baldwin 2016; Caselles-
Dupré et al. 2018; Ruas et al. 2019).

In the following, distances between vectors are calculated via the cosine distance. The 
trained model was able to partially incorporate semantics of mathematical identifiers. For 
instance, the closest 27 vectors to the mathematical identifier f are mathematical identi-
fiers themselves and the fourth closest noun vector to f is ‘function’. We observe that the 
results of the model trained on arXiv are comparable with our previous experiments on the 
DLMF.

In the  "Term Analogy" section, we used the semantic relations, see Eq.  4, between 
embedding vectors to search for relevant terms in the model. Hereafter, we will refer to 
this algebraic property as semantic distance to a given term with respect to a given relation, 
i.e., two related vectors. For example, to answer the previously mentioned query/question: 
What is to ‘complex’ as x is to ‘real’, one has to find the closest semantic vectors to ‘com-
plex’ with respect to the relation between x and ‘real’, i.e., finding � in

Instead of asking for mathematical expressions, we will now reword the query to ask for 
specific words. For example, to retrieve the meaning of f from the model, we can ask for: 
What is to f as ‘variable’ is to x? Or in other words, what is semantically close to f with 
respect to the relation between ‘variable’ and x? Table  8 shows the top 10 semantically 
closest results to f with respect to the relations between �variable and �x , �variable and �y , and 
�variable and �a.

� − �complex ≈ �x − �real.

Table 8  Analogies of the form: 
Find the Term where Term is a 
word that is to X what Y is to Z

Top-10 best Terms and their cosine similarities where

Term is to f what 
‘variable’ is to x

Term is to f what 
‘variable’ is to y

Term is to f what 
‘variable’ is to a

variables 0.7655 variables 0.7481 variables 0.7600
independent 0.7411 function 0.7249 function 0.7154
appropriate 0.7279 given 0.7103 appropriate 0.6925
means 0.7250 means 0.7083 independent 0.6789
ie 0.7234 ie 0.7067 instead 0.6784
instead 0.7233 independent 0.7030 defined 0.6729
namely 0.7139 thus 0.6925 namely 0.6719
function 0.7131 instead 0.6922 continuous 0.6707
following 0.7117 appropriate 0.6891 depends 0.6629
depends 0.7095 defined 0.6889 represents 0.6623

16 Non mentioned hyperparameters are used with their default values as described in the Gensim API 
(Řehůřek and Sojka 2010).
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From Table 8, we can observe a similar behaviour as seen in the "Term Analogy" sec-
tion. Later, we will explore that mathematical vectors build a cluster in the trained model, 
i.e., that the vectors of �f  , �x , and �y are close to each other with respect to the cosine 
similarity. This cluster, and the fact that we did not use stemming and lemmatization for 
preprocessing, explains that the top hit to the queries is always ‘variables’. To refine the 
order of the extracted answers, we calculated the cosine similarity between �f  and the vec-
tors for the extracted words directly. Table 9 shows the cosine distances between �f  and the 
extracted words from the query: Term is to f what ‘variable’ is to a.

Asking for the meaning of f is a very generic question. Thus, we performed a detailed 
evaluation on the first 100 entries17 of the MathMLBen benchmark (Schubotz et al. 2018). 
We evaluated the average of the semantic distances with respect to the relations between 
�variable and �x , �variable and �a , and �function and �f  . We have chosen to test on these relations 
because we believe that these relations are the most general and still applicable, e.g., seen 
in Table 9. In addition, we consider only results with a cosine similarity equal to or greater 
than 0.70 to maintain a minimum quality in our experiments. The overall results were 
poor, with a precision of p = .0023 and a recall of r = .052 . Despite the weak results, an 
investigation of some specific examples showed interesting characteristics; for example, 
for the identifier W, the four semantically closest results were functions, variables, form, 
and the mathematical identifier q. The poor performance illustrates that there might be 
underlying issues with our approach. However, as mentioned before, mathematical nota-
tion is highly flexible and content-dependent. Hence, in the next section, we explore a 
technique that rearranges the hits according to the actual close context of the mathemati-
cal expression.

Improvement by considering the context

We also investigate how a different word embedding technique would affect our experi-
ments. To do so, we trained a Distributed Bag-of-Words of Paragraph Vectors (DBOW-
PV) (Le and Mikolov 2014) model. We trained this DBOW-PV in the same corpus as our 
word2vec model (with the same preprocessing steps) with the following configuration: 
400 dimensions, a window size of 25, and minimum count of 10 words. In Schubotz et al. 

Table 9  The cosine distances of f 
regarding to the hits in Table 8

Cosine distances between the Terms from Table 8 to f.

function 0.8138
defined 0.7932
independent 0.7323
namely 0.7214
depends 0.7022
represents 0.6983
instead 0.6837
appropriate 0.6698
continuous 0.6203
variables 0.5638

17 Same entries used in Schubotz et al. (2017).
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(2017), they analyze all occurrences of mathematical identifiers and consider the entire 
article at once. We believe this prevents the algorithm from finding the right descriptor in 
the text, since later or prior occurrences of an identifier might appear in a different context, 
and potentially introduce different meanings. Instead of using the entire document, we con-
sider the algorithm of Schubotz et al. (2017) only in the input paragraph and similar para-
graphs given by our DBOW-PV model. Unfortunately, the obtained variance within the 
paragraphs brings a high number of false positives to the list of candidates, which affects 
the performance of the original approach negatively.

As a second approach for improving our system, we considered a given textual context 
to reorder extracted words according to their cosine similarities to the given context. For 
example, consider the sentence: ‘Let f (x, y) be a continuous function where x and y are 
arbitrary values.’. We ask for the meaning of f concerning this given context sentence. 
The top-k closest words to f in the word2vec model only represent the distance over 
the entire corpus, in this case, arXiv, but not regarding a given context. To address this 
issue, we retrieved similar paragraphs to our context example via the DBOW-PV model 
and computed the weighted average distance between all top-k words, that are similar 
to f and the retrieved sentences. We expected that the word describing f in our exam-
ple sentence would also present a higher cosine similarity to the context itself. Table 10 
shows the top-10 closest words (i.e., we filtered out other math tokens) and their cosine 
similarity to f in the left column. The right column shows the average cosine similarities 
of the extracted words to the context example sentence we used and its retrieved similar 
sentences.

As Table  10 illustrates, this context-sensitive approach was not beneficial; in fact it 
undermined our model. According to the fact that the identifier should be closer to the 
given context sentence rather than to the related sentences retrieved from the DBOW-PV 
model, we also explored the use of weighted average. However, the weighted average did 
not improve the results of the normal average. Other hyperparameters for the word embed-
ding models were also tested in an attempt to tune our system. However, we could not 
determine any drastic changes regarding the measured performances.

Table 10  We are looking for 
descriptive terms for f in a 
given context ‘Let f (x, y) be 
a continuous function where x 
and y are arbitrary values’. To 
achieve this, we retrieved close 
vectors to f and computed their 
distances to the given context 
sentence. To bring variety to the 
context, we used our DBOW-PV 
model to retrieve related 
sentences to the given context 
and computed the average 
distance of the words to these 
related sentences

Top-10 closes words (no math sym-
bols) to f and their cosine similarities.

After reordering the hits 
according to their distances 
to the context vector.

given 0.8162 case 0.8568
case 0.7960 corresponding 0.8562
corresponding 0.7957 note 0.8451
function 0.7900 thus 0.8414
note 0.7803 obtain 0.8413
thus 0.7726 ie 0.8335
obtain 0.7712 since 0.8250
value 0.7682 function 0.8086
ie 0.7656 value 0.8015
since 0.7583 given 0.7096
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Visualizing our model

Figure 1 illustrates four t-SNE plots of our word2vec model. Since t-SNE plots may pro-
duce misleading structures (Wattenberg et al. 2016), we plot four t-SNE plots with different 
perplexity values. Other parameters were set to their default values according to the TSNE 
python package. We colored word tokens in blue and math tokens in red. The plots illus-
trate, though not surprisingly, that math tokens are clustered together. However, a certain 
subset of math tokens appear isolated from other math tokens. By attaching the content to 
some of the vectors, we can see that math tokens, such as and (an and within math mode) 
and im (most likely referring to imaginary numbers) are part of a second cluster of math 
tokens. The plot is similar to the visualized model presented by Gao et  al. (2017), even 
though they use a different word embedding technique. Hence, the general structure within 
math word2vec models seems to be insensitive to the embedding technique of formulae 
used. Compared to Gao et al. (2017), we provide a model with richer details that reveal 
some dense clusters, e.g., numbers (bottom right plot at (11, 8)) or equation labels (bottom 
right plot at (-14, 0)).

Based on the presented results, one can still argue that more settings should be explored 
(e.g., different parameters and embedding techniques) for the embedding phase, different 
pre-processing steps (e.g., stemming and lemmatization) should be adopted, and post-pro-
cessing techniques (e.g., boosting terms of interest based on a knowledge database such as 
OntoMathPro (Elizarov et al. 2017)) should also be investigated. This presumably solves 

Fig. 1  t-SNE plot of top-1000 closest vectors of the identifier f with perplexity values 5 (top left), 10 (top 
right), 40 (bottom left), and 100 (bottom right) and the default values of the TSNE python package for other 
settings
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some minor problems, such as removing the inaccurate first hit in Table 8. Nevertheless, 
the overall results would not surpass the ones in Schubotz et al. (2017), which reports a 
precision score of p = 0.48 . On the grounds that mathematics is highly customizable, 
many of the defined relations between mathematical concepts and their descriptors are only 
valid in a local scope. Let us consider an author that notates his algorithm using the symbol 
� . The author’s specific use of � does not change its general use, but it affects the meaning 
in the scope of the article. Current ML approaches only learn patterns of most frequently 
used combinations, e.g., between f and ‘function’, as seen in Table 8.

Even though math notations can change, such as � in the example above, one could 
assume the existence of a common ground for most notations. The low performance of our 
experiments compared to the results in Schubotz et al. (2017) seem to confirm that math 
notations change regularly in real-world documents, i.e., are tied to a specific context. If a 
common ground exists, for math notations, it must be marginally small, at least in the 100 
test cases from Schubotz et al. (2018).

Overcoming issues of knowledge extraction

We assume the low performance regarding our knowledge extraction experiments are 
caused by fundamental issues that should be discussed before more efforts are made to 
train ML algorithms for extracting knowledge of math expressions. In the following, we 
discuss some reasons that we believe can help ML algorithms to understand mathematics 
better.

It is reported that 70% of mathematical symbols are explicitly declared in the context 
(Wolska and Grigore 2010). Only four reasons justify an explicit declaration in the context: 
(a) a new mathematical symbol is defined, (b) a known notation is changed, (c) used sym-
bols are present in other contexts and require specifications to be correctly interpreted, or 
(d) authors’ declarations are redundant (e.g., for improving readability). We assume (d) is 
a rare scenario compared to the other ones (a–c), except in educational literature. Current 
math-embedding techniques can learn semantic connections only in that 70%, where the 
definiens is available. Besides (d), the algorithm would learn either rare notations (in case 
of (a)) or ambiguous notations (in cases (b–c)). The flexibility that mathematical docu-
ments allow to (re)define used mathematical notations further corroborates the complexity 
of learning mathematics.

Learning algorithms would benefit from literature focused on (a) and (d), instead of (b) 
and (c). Similar to students who start to learn mathematics, ML algorithms have to con-
sider the structure of the content they learn. It is hard to learn mathematics only consid-
ering arXiv documents without prior or complementary knowledge. Usually, these docu-
ments represent state-of-the-art findings containing new and unusual notations and lack of 
extensive explanations (e.g., due to page limitations). In contrast, educational books care-
fully and extensively explain new concepts. We assume better results can be obtained if 
ML algorithms are trained in multiple stages, first on educational literature, then on data-
sets of advanced math articles. A basic model trained in educational literature should cap-
ture standard relations between mathematical concepts and descriptors. This model should 
also be able to capture patterns independently of how new or unusual the notations are 
present in the literature. In 2014, Matsuzaki et al. (2014) presented some promising results 
to answer mathematical questions from Japanese university entrance exams automatically. 
While the approach involves many manual adjustments and analysis, the promising results 
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illustrate the different levels of knowledge that is still required for understanding arXiv 
documents vs. university entrance level exams. A well-structured digital mathematical 
library that distinguishes the different levels of sophistication in articles (e.g. introductions 
vs. state-of-the-art publications) would also benefit mathematical machine learning tasks.

The lack of references and applications that provide a solid semantic structure of natural 
language for mathematical identifiers make the disambiguation process of the latter even 
more challenging. In natural texts, one can try to infer the most suitable word sense for a 
word based on the lemma18 itself, the adjacent words, dictionaries, and thesauri to name 
a few. However, in the mathematical arena, the scarcity of resources and the flexibility 
of redefining their identifiers make this issue much harder. The context text preceding or 
following the mathematical equation is essential for its understanding. This context can 
be considered in a long or short distance away from the equation, which aggravates the 
problem. Thus, a comprehensive annotated dataset that addresses these needs of structural 
knowledge would enable further progress in MathIR with the help of ML algorithms.

Another primary source of complexity is the inherent ambiguity present in any lan-
guage, especially in mathematics. A typical workaround in linguistics for such ambigu-
ous notations is to consider the use of lexical databases (e.g., WordNet Miller 1995; Fell-
baum 1998) to identify the most suitable word senses for a given word. These databases 
allow embeddings algorithms to train a vector for each semantic meaning for every token. 
For example, Java could have multiple vectors in a single model according to its different 
meanings of the word, e.g., the island in the south of Indonesia, the programming language 
or the coffee beans. However, mathematics lacks such systems, which makes its adoption 
not feasible at the moment. In Youssef (2017), they propose the use of tags, similarly to 
the POS tags in linguistics, but for tagging mathematical TeX tokens, bringing more infor-
mation to the tokens considered. As a result, a lexicon containing several meanings for a 
large set of mathematical symbols is developed. OntoMathPro (Elizarov et al. 2017) aims 
for generating a comprehensive ontology of mathematical knowledge and, therefore, also 
contain information about the different meanings of mathematical tokens. Such dictionar-
ies might enable the disambiguation approaches in linguistics to be used in mathematical 
embedding in the near future.

Another issue in recent publications is the lack of standards and the scarcity of bench-
marks to properly evaluate MathIR algorithms. Krstovski and Blei (2018); Yasunaga and 
Lafferty (2019) provide an interesting perspective on the problem of mathematic embed-
dings. Their experiments are focused on math-analogies. Our findings on "Term Analogy" 
section corroborate with the math-analogies results, as our experiments have comparable 
results in a controlled environment. However, because of a missing well-established bench-
mark, we, as well the mentioned publications, are only able to provide incipient results. 
Existing datasets are often created for and, therefore, limited to specific tasks. For example, 
the NTCIR math tasks (Aizawa et  al. 2013, 2014; Zanibbi et  al. 2016a) or the upcom-
ing ARQMath19 task, provide datasets that are specifically designed to tackle problems of 
mathematical search engines. The secondary task of ARQMath actually search for math-
analogies. In general, a proper, common standard for interpreting semantic structures of 
mathematics (see for example the mentioned problems with �i in "Foundations and Related 

19 https ://www.cs.rit.edu/~dprl/ARQMa th/ [Accessed Feb. 2020].

18 Canonical form, dictionary form, or citation form of a set of words.

https://www.cs.rit.edu/%7edprl/ARQMath/


Scientometrics 

1 3

Work" section) would be beneficial for several tasks in MathIR, such as semantic knowl-
edge extraction.

Conclusions

In this paper, we explored the use and effectiveness of word embedding for MLP on five 
fundamental tasks, namely, (i) term similarity, (ii) math analogies, (iii) concept modeling, 
(iv) query expansion using a novel centroid-based technique, and (v) semantic knowledge 
extraction. While we were able to produce promising results regarding the tasks (i) to (iv), 
we evaluated that task (v), semantic knowledge extraction, is compromised even when 
considering robust techniques borrowed from the NLP domain. After experimenting with 
popular mathematical representations in MathIR, we exposed fundamental problems that 
prevent ML algorithms from learning mathematics. We also discovered the same problems 
in several related research projects. Many of these projects show promising examples with-
out extensive evaluations, motivating more researchers to follow the same idea with similar 
fundamental issues. To address this problem, we discussed some of the reasons that we 
believe thwart the progress in MathIR in the direction of machine learning.

As we explored through this paper, our preliminary results stress the urgent need for 
creating extensive math-specific benchmarks for testing math embedding techniques on 
math-specific tasks. The authors plan to begin developing some of such benchmarks and to 
pursue further investigations of some of the lines of inquiry indicated in the paper. Devel-
oping such a benchmark will also enable us to extensively evaluate our exploratory results 
in this paper.

To appreciate more the magnitude and dimensions of creating such benchmarks, it is 
instructive to look at some of those developed for NLP whose tasks can beneficially inform 
and guide corresponding tasks in MLP. The NLP benchmarks include one for natural lan-
guage inference (Bowman et al. 2015), one for machine comprehension (Rajpurkar et al. 
2016), one for semantic role modeling (Palmer et al. 2005), and one for language modeling 
(Chelba et al. 2014), to name a few. With such benchmarks, which are often de facto stand-
ards for the corresponding NLP tasks, the NLP research community has been able to (1) 
measure the performance of new techniques up to statistical significance, and (2) track pro-
gress in various NLP techniques, including deep learning for NLP, by quickly comparing 
the performance of new techniques to others and to the state-of-the-art.

While our exploratory studies regarding our term similarities, analogies, and query 
expansions need extensive future experimentation for statistically significant validation on 
large datasets and benchmarks, they show some of the promise and limitations of word 
embedding in math (MLP) applications. Future investigations will also examine the effec-
tiveness of other embedding techniques, as well as more MLP tasks and applications such 
as part-of-math tagging, math-term disambiguation, and representation-to-computation 
deep learning models, to name a few.
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