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Abstract. Research on academic integrity has identified online para-
phrasing tools as a severe threat to the effectiveness of plagiarism de-
tection systems. To enable the automated identification of machine-
paraphrased text, we make three contributions. First, we evaluate the ef-
fectiveness of six prominent word embedding models in combination with
five classifiers for distinguishing human-written from machine-paraphrased
text. The best performing classification approach achieves an accuracy
of 99.0% for documents and 83.4% for paragraphs. Second, we show that
the best approach outperforms human experts and established plagia-
rism detection systems for these classification tasks. Third, we provide a
Web application that uses the best performing classification approach to
indicate whether a text underwent machine-paraphrasing. The data and
code of our study are openly available.

Keywords: paraphrase detection · plagiarism detection · document clas-
sification · word embeddings

1 Introduction

Plagiarism is a severe form of academic misconduct and a pressing problem for
educational and research institutions, publishers, and funding agencies. Students
who submit plagiarized works can receive credits without achieving their edu-
cational objectives. Researchers who plagiarize can inflate their publication and
citation counts, secure research funding for the ideas of others, and advance to
job positions for which they are not qualified [42, 13].

To counteract academic plagiarism, many institutions employ plagiarism de-
tection systems (PDS). These tools reliably identify duplicated text yet are signif-
icantly less effective in detecting paraphrases, translations, and other concealed
forms of plagiarism [19, 43, 24].

Recent studies [39, 37] show that an alarming proportion of students nowa-
days employ online paraphrasing tools (OPT) (also known as text rewriting or
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text spinning tools) to obfuscate text taken from other sources. According to
Rogerson & McCarthy [39]: ”[...] spinning tools are equally available to aca-
demics who may be enticed with the notion of re-purposing already published
content as a way of increasing research output.”

OPT typically employ artificial intelligence approaches to paraphrase a text,
e.g., by replacing words with their synonyms [45]. The tools were initially de-
signed for Search Engine Optimization [22] by inflating a website’s PageRank.
The idea is to re-use the content of the promoted website to create numerous
bogus websites that link to the advertised website. OPT serve to alter the con-
tent so that Web search engines do not recognize the fraudulent websites as
duplicates and thus include them for calculating the PageRank of the promoted
site. If successful, the approach negatively affects the users of Web search engines
since the inflated PageRanks do not reflect the impact of the websites but rather
the effort invested into producing fraudulent websites.

In academia, OPT help to obfuscate plagiarism, facilitate collusion, and sup-
port ghostwriters in producing work that appears original. The tools severely
threaten the effectiveness of plagiarism detection systems, which are crucial for
ensuring academic integrity. Rogerson & McCarthy [39] call for technical solu-
tions to identify machine-paraphrased text and their integration with educational
and policy actions to counteract the use of OPT. The International Journal for
Educational Integrity even devoted a special issue5 to this topic.

This paper answers the call of the academic integrity community by de-
vising an automated approach that reliably distinguishes human-written from
machine-paraphrased text and providing the solution as a free and open-source
Web application. We structure the presentation of our contributions as follows.
Section 2 briefly reviews related work on paraphrase identification and the appli-
cation of dense vector models for natural language processing (NLP). Section 3
describes the training and selection of dense vector models and machine learn-
ing classifiers for our task. Section 4 presents the evaluation of the automated
classification approach using the judgments of experts and the capabilities of the
leading plagiarism detection system Turnitin as baselines. Section 5 summarizes
our contributions and presents future work.

2 Related Work

The research on plagiarism detection has yielded many approaches that employ
lexical [4, 18], syntactical [33, 44], semantic [41, 27], or cross-lingual text analysis
[12, 14]. These approaches reliably detect copied or moderately altered plagia-
rism. Some approaches can also identify paraphrased and translated text.

Most research on paraphrase identification focuses on quantifying to which
degree the meanings of two sentences are identical. Approaches for this task
employ lexical and syntactic analysis, semantic similarity measures that are ei-
ther knowledge-based (i.e., derived from dictionaries, thesauri, or other lexical

5 https://edintegrity.biomedcentral.com/mbp
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resources) or corpus-based (e.g., LSA [9], ESA [15], or word embeddings), as well
as shallow and deep machine learning [2].

Approaches analyzing nontextual content features, such as academic citations
[16, 28], images [25, 11], and mathematical content [26, 29], complement the text
analysis approaches to improve the detection of concealed plagiarism.

The problem we address, i.e., distinguishing human-written and machine-
paraphrased text at the level of documents and passages is still in its early stages.
The work of Zhang et al. [45] is most related to our contributions. The authors
provided a tool that determines if two articles are derived from each other and
clusters these related articles. However, Zhang et al. did not investigate the task
of distinguishing original and machine-fabricated text. Dey et al. [10] applied an
SVM classifier to identify semantically similar tweets and other short texts.

Regarding techniques to accomplish the task at hand, the use of dense vec-
tors to represent words in documents has attracted much research in recent
years. Word embedding techniques, such as word2vec [31], have alleviated com-
mon problems in bag-of-words (BOW) approaches, e.g., scalability issues, and
the curse of dimensionality. In addition to word embeddings, representing en-
tire documents [21] and characters [7, 36] in a single fixed-length dense vector
is another successful approach. The two techniques can capture latent semantic
meaning from textual data using efficient neural network language models. The
superiority of token-based embedding models over count-based models has been
observed for several NLP problems, such as word similarity, document classifi-
cation, and sentiment analysis [35]. However, the use of neural language models
comes at the cost of requiring large amounts of data to derive the models. More-
over, the embedding process does not observe word order, and its quality strongly
depends on the selection of hyperparameters [30, 38, 17, 3].

3 Methodology

To devise an approach for classifying texts as either human-written or machine-
paraphrased, we analyzed the performance of pre-trained word embedding mod-
els that convert texts into fixed-length vectors. We investigated both classifying
entire documents and paragraphs. Classifying paragraphs represents the more
realistic detection task since plagiarists more often copy and obfuscate passages
rather than whole texts [39, 43]. After training the models, we used features
thereof in machine learning classifiers, as we describe hereafter.

3.1 Datasets for Training and Testing

To create training sets, we used all 4,012 featured articles from the English
Wikipedia because they objectively cover a wide range of topics in great breadth
and depth6. Senior Wikipedia editors select articles of superior quality as fea-
tured articles (approx. 0.1% of all articles). Featured articles typically have nu-

6 https://en.wikipedia.org/wiki/Wikipedia:Content\_assessment
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merous authors and undergo many revisions. Thus, they are written in high-
quality English and unlikely to exhibit a bias towards the writing style of spe-
cific persons. Lastly, the articles are publicly available, which increases the re-
producibility of our research.

To obtain a training set for documents, we machine-paraphrased (spun) all
articles using the SpinBot7 API. The service is the technical backbone of several
widely-used OPT, e.g., Paraphrasing Tool8[39] and Free Article Spinner9. Thus,
the training set comprises of 8,024 articles (4,012 original, 4,012 spun).

To create a test set for documents, we selected 1,990 Wikipedia articles la-
beled as good articles at random. To receive this label, articles must be well-
written, verifiable, neutral, broad in coverage, stable, and illustrated by media6.
We paraphrased all articles using the SpinBot API to obtain the test set of 3,980
articles (1,990 original, 1,990 spun).

To obtain the training and test sets for paragraphs, we split the original
and spun articles from the document training set (8,024) and the document
test set (3,980) into paragraphs. We discarded paragraphs with fewer than three
sentences, as these typically represented titles or subtitles. The resulting training
set consists of 200,767 paragraphs (98,282 original, 102,485 spun); the test set
consists of 79,970 paragraphs (39,241 original, 40,729 spun).

3.2 Word Embedding Models

We evaluated the following pre-trained word embedding models for the classifi-
cation task: GloVe10 [34], word2vec11 [31], fastText12 [5], and USE13 [7]. GloVe
and fastText use a corpus of Wikipedia articles to derive their vector represen-
tations. Word2vec uses Google News articles; USE employs a mixed collection
including Wikipedia articles, Web news, question-answer Web pages, discussion
fora, and the Stanford Natural Language Inference (SNLI) corpus [7].

Additionally, we trained a paragraph-vector (PV) model [21] from scratch.
This model uses a Wikipedia Dump [40] as the training corpus, a distributed bag-
of-words training model (DBOW), a window size of 15 words, a minimum count
of 5 words, trained word-vectors in skip-gram fashion, averaged word vectors, and
30 epochs. We chose the distributed bag-of-words training model for paragraph
vectors (PV-DBOW) over a distributed memory model for paragraph vectors
(PV-DM) because of its superiority for semantic similarity tasks [20]. Parameters
we do not describe, correspond to the default values in the gensim14 API. All
the word embedding models have 300 dimensions, except for USE, which has
512 dimensions. Table 1 summarizes the word embedding models we analyzed.

7 https://spinbot.com/API
8 https://paraphrasing-tool.com/
9 https://free-article-spinner.com/

10 https://nlp.stanford.edu/projects/glove/
11 https://code.google.com/archive/p/word2vec/
12 https://fasttext.cc/docs/en/english-vectors.html
13 https://tfhub.dev/google/universal-sentence-encoder/2
14 https://radimrehurek.com/gensim/models/doc2vec.html
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Table 1. Word embedding models in our experiments.

Algorithm Main Characteristics Training Corpus Dimensions

GloVe Word-word co-occurrence matrix Wikipedia dump 2014 + Gigaword 5 300
word2vec Continuous Bag-of-Words (CBOW) Google News 300
Paragraph Vectors Distributed Bag-of-Words (PV-DBOW) Wikipedia Dump 2010 300
fastText-rw Skip-gram without sub-words Wikipedia Dump 2017 + UMBC 300
fastText-sw Skip-gram with sub-words Wikipedia Dump 2017 + UMBC 300
USE Deep Average Network Wikipedia + Various sources 512

Each text is represented as the average of its constituent word vectors ac-
cording to the word embedding models in Table 1. We accessed the pre-trained
model and retrieved the vectors for the words occurring in each of the texts. If
none of the words in a document existed in the pre-trained model, the document
would have been discarded. However, this case did not occur.

All the models in Table 1, except for PV-DBOW, yield a vector representa-
tion for each word. In PV-DBOW, the embedded tokens represent entire texts.
Thus, a match of an unseen text, i.e., a text not part of the external training
corpus, and the pre-trained PV-DBOW model is unlikely. Inferring the vector
representations for unseen texts requires an additional training step. Both train-
ing steps, i.e., building the document embeddings model (similar to the model
used in word2vec) and inferring the vector representations, require parameter
tuning. For all texts in our training and test sets, we performed this extra train-
ing step using the following hyperparameters for the gensim API: alpha = 10−4,
min alpha = 10−6, and 300 epochs. The resulting PV-DBOW document embed-
ding model requires at least 7 GB of RAM to be loaded and used. All word-based
embedding models require between 1 GB to 3 GB of RAM. The higher memory
consumption of PV-DBOW can make it unsuitable for some use cases.

3.3 Machine Learning Classifiers

After applying the pre-trained models to our training and test sets, we passed
on the results to five machine learning classifiers: k Nearest Neighbors (kNN)
[1], Random Forests (RF) [6], Logistic Regression (LR) [23], Support Vector
Machines (SVM) [8], and Näıve Bayes (NB) [32]. We used multiple classifiers to
explore the stability of the word embedding models concerning each classifier’s
characteristics. We adjusted the parameters for each classifier using a grid-search
approach for the parameter values shown in Table 2.

4 Evaluation

Section 4.1 presents the results of applying the combinations of word embed-
ding models and machine learning classifiers to the test sets. Section 4.2 and
Section 4.3 establish two baselines for the results of the automated classification
approach by indicating how accurately human experts (4.2) and respectively, a
leading PDS (4.3), identify machine-paraphrased articles.



6 T. Foltýnek et al.

Table 2. Grid-search configuration.

Classifier Parameter Range

kNN neighbors 1, 5, 15, 25 . . . 95

Logistic
Regression

solver newton-cg, lbfgs, sag, saga
maximum iteration 500, 1000, 1500
multi-class ovr, multinomial
tolerance 0.01, 0.001, 0.0001, 0.00001

Support
Vector
Machine

kernel linear, radial bases function, polynomial
gamma 0.01, 0.001, 0.0001, 0.0001
polynomial degree 1, 2, 3, 4, 5, 6, 7, 8, 9
C 1, 10, 100

Random
Forest

number of estimators 100, 325, 550, 775, 1000
maximum features auto, sqrt
maximum depth 10, 32, 77, 100, None
minimum samples split 2, 5, 10
minimum samples leaf 1, 2, 4

4.1 Automated Classification

Tables 3 and 4 show the accuracy of the classification approaches at the doc-
ument level and the paragraph level, respectively. Due to resource limitations,
we did not employ kNN and RF for the paragraph classification task but will
investigate these classifiers in the future.

At the document level, PV-DBOW outperformed the other techniques for
four of the five classifiers, followed by word2vec, and fastText-rw. However, at
the paragraph level, PV-DBOW consistently yielded the worst results for all
tested classifiers. This finding is in line with results by [20], who reported a
performance drop when using PV-DBOW for short documents.

Table 3. Classification accuracy for documents.

Classifier GloVe word2vec PV-DBOW fastText-rw fastText-sw USE

kNN 0.8874 0.9085 0.8867 0.8920 0.7696 0.8525
RF 0.9085 0.9397 0.9606 0.9246 0.8791 0.8533
LR 0.9457 0.9563 0.9829 0.9191 0.6950 0.7734
SVM 0.9716 0.9744 0.9900 0.9789 0.9518 0.9437
NB 0.7427 0.7437 0.8829 0.7492 0.6920 0.7455

Boldface indicates the best value of a row.
Underlining indicates the best value of a column.
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Table 4. Classification accuracy for paragraphs.

Classifier GloVe word2vec PV-DBOW fastText-rw fastText-sw USE

LR 0.7758 0.8050 0.5806 0.7757 0.6068 0.6615
SVM 0.7908 0.8225 0.5244 0.8336 0.7896 0.7815
NB 0.5390 0.5163 0.5094 0.5229 0.5297 0.5519

Boldface indicates the best value of a row.
Underlining indicates the best value of a column.

For paragraph classification, the fastText-rw embedding model, in combina-
tion with an SVM classifier, achieved the best result followed by word2vec in
combination with SVM. For fastText, we evaluated two training models, one
using complete words (-rw) and the other using sub-words (-sw). The sub-words
model uses the sum of the character n-grams of its constituent vectors. For ex-
ample, using n = 3, the word java is represented as {ja, jav, ava, va} and the
word java itself. Thus, the sub-model can embed words that are not in the
training corpus. In theory, this approach can capture more semantic information
from the corpus. However, as Tables 3 and 4 show, on average, the whole word
model (-rw) outperformed the sub-word one (-sw).

We conclude from the experiments that OPT often introduce rare and out-
of-context words that allows the spun text to be identified. Prentice et al. [37]
also reported unusual words as a means to manually identify spun essays.

4.2 Human Baseline

To gauge how well humans can distinguish original from machine-paraphrased
text, we conducted a quiz. We randomly selected ten featured Wikipedia articles
with various topics. For each article, we extracted the first one or two paragraphs
to obtain a text of approximately 100 words. We paraphrased six of the excerpts
via the SpinBot API and used the other four extracts unaltered. Using Quiz-
Maker15, we prepared a Web-based quiz that showed the ten excerpts one at a
time. Participants could vote (by clicking one of two buttons) whether the text
had been machine-paraphrased and optionally submit a freely worded comment
after completing the quiz. We shared the quiz via e-mail and a Facebook group
with researchers from the academic integrity community.

During three weeks, 73 subjects completed the quiz. The completion times
ranged between 2min 12s and 36min 51s with an average of 9min and 18s. The
accuracy of the participants ranged between 40% and 100%, with an average of
78.4%. One subject, who classified all cases correctly, commented: ”I paid special
attention to any oddness in the text. I never read student works so carefully.”

The experiment showed that experienced educators who read carefully and
expect to encounter machine-paraphrased text could achieve an accuracy be-

15 https://www.quiz-maker.com/
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tween 90% and 100%. However, even in this setting, the average accuracy was
below 80%. We expect that the efficiency will be lower in a realistic scenario, in
which readers do not pay special attention to spotting machine paraphrases.

4.3 Plagiarism Detection System Baseline

To quantify the benefit that our approach (word2vec + SVM) provides over-
current PDS, we compared it to the leading PDS Turnitin. Using the PDS, we
checked ten machine-paraphrased articles selected at random from the document
test set. In all cases, Turnitin found the correct source. The reported text simi-
larity ranged between 49% and 67%, with an average of 55.2%. In other words,
if the entire document was spun, Turnitin reliably identified the text overlap.

In a second experiment, we tested Turnitin’s detection effectiveness for doc-
uments that mix original and machine-paraphrased text. We created nine doc-
uments (each approx. 3,000 words long) that contained between 10% and 90%
machine-paraphrased text with the remainder being random text generated by
a free online generator16. In a document that contained only one machine-
paraphrased paragraph (298 words), Turnitin failed to identify the spun text.
For the other documents, Turnitin correctly marks parts of the spun text as
plagiarized but in 2 cases, fails to identify Wikipedia as the source.

These results are in line with the findings of Rogerson & McCarthy [39],
who used two OPT (one of them based on the SpinbBot API) to paraphrase a
paragraph from a prior publication. When the unchanged paragraph was used as
the input to Turnitin, the system found a 100% match with the source. However,
for the two machine-paraphrased versions of the paragraph, Turnitin computed
a similarity score of zero for the source.

We conclude from these experiments that if a plagiarist employs OPT to
paraphrase a few paragraphs, the resulting similarity is often below Turnitin’s
threshold, thus causing the plagiarism to remain undetected.

5 Conclusion & Future Work

A combination of the word2vec embedding model and an SVM classifier achieved
the best trade-off between accuracy, computation time, and memory consump-
tion for classifying entire documents and paragraphs as original or machine-
paraphrased (cf. Section 4.1). Consequently, we chose this approach for realizing
the demonstration system available at

https://purl.org/spindetector.

The presented approach outperformed human experts in distinguishing orig-
inal and machine-paraphrased text (cf. Section 4.2). Compared to existing PDS,
the method achieved a better detection performance for cases in which a few
paragraphs have been machine-paraphrased (cf. Section 4.3). If plagiarists spin

16 http://www.randomtextgenerator.com/
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entire documents, PDS can typically identify the source. However, PDS often
fail to identify cases in which individual paragraphs have been taken over from
a source and been obfuscated using OPT.

The presented classification approach demonstrates the feasibility of devis-
ing effective and efficient technical measures to counteract the use of OPT for
disguising academic plagiarism. Including the presented methods in plagiarism
detection systems can mitigate the weaknesses of current systems and assist
educators in more reliably identifying disguised instances of plagiarism.

We are aware that the selection of high-quality Wikipedia articles and the
inclusion of a single OPT limits the ability to generalize our findings. Distin-
guishing well-written Wikipedia articles from their machine-paraphrased coun-
terparts does not entirely reflect the task that educators face in their everyday
work. Students for whom English is a second language often use rare or out-of-
context words due to their insufficient command of English.

Our future work will address the limitations of the current study by including
articles from more repositories (e.g., arXiv17 and Reuters18) and additional OPT
(e.g. Seo Tools Centre19, EZ Rewriter20, or Spinner Chief21). Moreover, we plan
to collect original texts produced by non-native speakers of English and a dataset
of texts paraphrased via cyclic machine translation. Plagiarists often employ
cyclic machine translation to obfuscate duplicated text. These additions will
increase the diversity of the texts used for training and testing and hence, the
complexity of the classification task. To increase the classification effectiveness,
we will investigate the performance of deep neural network approaches.

We are confident that the good results of the presented approach can be
replicated and improved in future work. To ensure the reproducibility of our
experiments and to facilitate future research on this task, the data and code for
our study, as well as for the Web-based demonstration system, are available at

https://doi.org/10.7302/bewj-qx93
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