Information retrieval on mind maps – what could it be good for?

Abstract—Mind maps are used by millions of people. In this paper we present how information retrieval on mind maps could be used to enhance expert search, document summarization, keyword based search engines, document recommender systems and determining word relatedness. For instance, words in a mind map could be used for creating a skill profile of the mind maps’ author and hence enhance expert search. This paper is a research-in-progress paper which means no research results are presented but only ideas.

Keywords-data mining, information retrieval, mind maps, expert search, document clustering, document classification

I. INTRODUCTION

Mind maps were originally invented by Tony Buzan in the 1970s [1] and are nowadays used by millions of people for brainstorming, note taking, project planning, decision making, and document drafting. Many software tools exist to support the creation of mind maps [2, 3]. The probably most popular ones are MindManager with about 1.5 million users [4] and FreeMind with about 150,000 downloads a month [5]. Hundreds of books and research articles were published about how to create mind maps and about evaluating mind maps’ effectiveness, for instance, in the field of education [6-9].

However, to our knowledge, no research exists whether information extracted from mind maps could be used for enhancing other applications. We believe, it can and present our ideas in this paper. Each of the next sections deals with enhancing a particular application, namely

- Expert search
- Document summarization
- Keyword based search engines
- (Document) Recommender Systems
- Determining word relatedness

After presenting the ideas, the concept of information retrieval on mind maps in general is discussed as well as future research.

II. EXPERT SEARCH

Finding the right experts in a big company is a difficult endeavor. In first attempts, databases were used and employees could enter their skills manually [10, 11]. In the last decade much research has been performed on automatically creating skill profiles. The probably most promising approach is analyzing documents. For instance, if a researcher has published many documents containing the word ‘mind map’, she probably has some expertise in the field of mind mapping. Typical documents being analyzed are emails, visited websites, scholarly articles and documents published in a company’s intranet [12-16]. Mind maps have not been used so far.

Figure 1. A mind map (early draft of this paper)

A mind map (see Figure 1) seems well suited for creating a skill profile of its author. The words in a mind map should specify quite well the author’s expertise. In addition, nodes can contain notes and links which could also be analyzed. In contrast to text documents, a mind map seems likely to contain less stop and other irrelevant words. This should facilitate the creation of skill profiles.
III. DOCUMENT SUMMARIZATION

Search engines usually display summarized data for each search result. This could be the document’s title, URL, or a short extract of the document’s text. Academic search engines additionally display data such as the author, publishing date or the abstract (see Figure 2). This does not always deliver satisfying results. In Figure 2, for instance, the extract is not very informative, it equals basically the title. Alternatively to text extracts, some researchers attempted to automatically create abstracts [17-19] or summarizing documents based on user generated data such as hyperlinks [20], social annotations [21] and annotated bibliographies [22].

Using Mind Maps To Teach Social Problems Analysis.

AR Peterson, Rl Snyder - 1996 - eric.ed.gov

--- ED424662 - Using Mind Maps To Teach Social Problems Analysis... ERIC # ED424662.

Title: Using Mind Maps To Teach Social Problem Analysis. --- Cited by 10 - Related articles - Cached - Import into RefWorks

Figure 2. Example of summary data on Google Scholar

Mind maps could be used to complement summarization of documents. Most mind mapping tools allow to link nodes in the mind map with documents on the user’s hard drive or to link a node to a webpage. The node’s text, and the text of parent nodes, could be seen as a summary for the linked document. Figure 3 illustrates this approach: The node with the red arrow and gray background links to the PDF file of the scholarly article ‘Are your citations clean?’ [23]. This article deals with problems of citation analysis. In this example the node which is linking to the PDF and its parent nodes summarize the article’s content well:

Citation Analysis --> Problems --> Technical Problems --> problem: different authors with the same name

Certainly, one occurrence in a mind map would not be sufficient for a thoroughly summary. But if several users would link a document in several mind maps, this could add up to a decent summary, highlighting what readers found most relevant in the document.

![Figure 3. Mind maps as document summary and for determining word relatedness](image)

IV. KEYWORD BASED SEARCH ENGINES

When searching for documents, usually a keyword is entered and the search engine returns those documents containing the keyword. Various algorithms exist to calculate how relevant a document is for a certain keyword search (e.g. tf-idf and BM25(f)), but usually only words contained in the documents are considered. Only few approaches consider words of ‘neighbored’ documents additionally [24]. Considering neighbored documents means, document A could be found for a keyword search even if document A does not contain the keyword, but document B, which is linking to document A. Usually this kind of link analysis is applied to scholarly literature and websites. However, it seems likely that the same concept could be applied to mind maps.

If a mind map links to a document, the words of the linking (and parental) node could be assigned to the linked document. Figure 4 illustrates this: The mind map contains a node called ‘expert search’ and child nodes link to documents related to expert search (those with the red arrows). However, many of these documents do not contain the term ‘expert search’, but other expressions such as ‘expert finder’, ‘expertise management’ or ‘skill management’. If search engines would analyze mind maps and treat them as ‘neighbored’ documents, recall in document retrieval could be increased.

V. (DOCUMENT) RECOMMENDER SYSTEMS

One common recommendation approach is to recommend those items which are related to items a user likes (item based recommendations). For scholarly literature and websites, relatedness often is determined via citation analysis and hyperlink analysis respectively. The same concept could be applied to mind maps.

![Figure 5. Expected Link Relatedness (Illustration)](image)

The basic idea of what we call ‘Mind Map Citation Analysis’: when two documents A and B are linked by a mind map, document B could be recommended to those users liking document A. This concept could be enhanced with common citation analysis approaches. For instance, if two documents are linked in high proximity, their relatedness can be expected to be higher than two documents linked in lower proximity [25, 26]. Figure 5 illustrates this concept: Link 1 and 2 are in direct proximity. Therefore, the linked documents can be expected to be highly related. Between link 3 and 4 is a higher distance, so their relatedness is likely to be lower.
VI. DETERMINING WORD RELATEDNESS

Knowing how words are related is important for many applications. For instance, search engines want to determine synonyms [27–29] and offer search query recommendations [30–32]; social tagging systems often recommend related tags to their users [33–35]; and, among others, for web 2.0 applications, (semi) automatic generation of ontologies is desirable [36–38]. Again, it seems likely that information retrieval on mind maps could help enhancing these applications.

A mind map is a graph and nodes are in hierarchical order. As such the nodes’ terms are in direct relation to each other. For instance, in Figure 3: Based on the mind map a search query recommender could recommend the terms ‘problems’ or ‘definition’ to someone searching for ‘citation analysis’ in order to specify his search. Or, if a person is searching for ‘citation analysis’, then ‘peer review’ might be an interesting search term to broaden the search.

VII. DISCUSSION AND FURTHER RESEARCH

In this paper we presented how data of mind maps could be used to enhance expert search, document summarization, keyword based search engines, document recommender systems and determining word relatedness. The presented ideas are not yet supported by research and it could turn out that data of mind maps is not able to enhance the mentioned applications. In addition, two more challenges exist. First, it is unknown if a sufficient number of people create mind maps and if they are willing to share their data. Second, the robustness of data seems critical. All platforms analyzing data of users do have to cope with spam and fraud as soon as they become successful. There is no reason to assume that this would be different if information retrieval on mind maps became successful.

As part of the SciPllore.org project we will further research information retrieval on mind maps. Recently we developed a special mind mapping software focusing on researchers needs [39]. This software will help to gather and analyze mind maps in order to see if the here presented ideas may be realized.

REFERENCES

Additional Information

Related Work | http://docear.org/docear/research-activities/

Authors | Joeran Beel
Bela Gipp
Jan-Olaf Stiller

BibTeX | @InProceedings{Beel09f,
Title = {{I}nformation {R}etrieval on {M}ind {M}aps - {W}hat {C}ould it be {G}ood {F}or?},
Author = {{B}eel, {J}oeran and {G}ipp, {B}ela and {S}tiller, {J}an-{O}laf},
Booktitle = {{P}roceedings of the 5th {I}nternational {C}onference on {C}ollaborative {C}omputing: {N}etworking, {A}pplications and {W}orksharing ({C}ollaborate{C}om'09)},
Year = {2009},
Address = {Washington, USA},
Month = {Nov.},
Note = {ISBN 978-963-9799-76-9},
Publisher = {IEEE}
}

RefMan (RIS) | TY - CONF
AD - Washington, USA
AU - Beel, Joeran
AU - Gipp, Bela
AU - Stiller, Jan-Olaf
DA - 2009/nov.
PB - IEEE
ST - Information Retrieval on Mind Maps - What Could it be Good For?
T2 - Proceedings of the 5th International Conference on Collaborative Computing: Networking, Applications and Worksharing (CollaborateCom'09)
TI - Information Retrieval on Mind Maps - What Could it be Good For?
ID - 43
EN -

EndNote | %0 Conference Proceedings
%A Beel, Joeran
%A Gipp, Bela
%A Stiller, Jan-Olaf
%T Information Retrieval on Mind Maps - What Could it be Good For?
%P Proceedings of the 5th International Conference on Collaborative Computing: Networking, Applications and Worksharing (CollaborateCom'09)
%I IEEE
%8 2009/nov.
%1 Information Retrieval on Mind Maps - What Could it be Good For?
%W Washington, USA