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Abstract

The increasing number of questions on Question Answering (QA) plat-
forms like Math Stack Exchange (MSE) signifies a growing information
need to answer math-related questions. However, there is currently very
little research on approaches for an open data QA system that retrieves
mathematical formulae using their concept names or querying formula
identifier relationships from knowledge graphs. In this paper, we aim to
bridge the gap by presenting data mining methods and benchmark results
to employ Mathematical Entity Linking (MathEL) and Unsupervised For-
mula Labeling (UFL) for semantic formula search and mathematical ques-
tion answering (MathQA) on the arXiv preprint repository, Wikipedia,
and Wikidata. The new methods extend our previously introduced sys-
tem , which is part of the Wikimedia ecosystem of free knowledge. Based
on different types of information needs, we evaluate our system in 15 infor-
mation need modes, assessing over 7,000 query results. Furthermore, we
compare its performance to a commercial knowledge-base and calculation-
engine (Wolfram Alpha) and search-engine (Google). The open source
system is hosted by Wikimedia at https://mathqa.wmflabs.org. A de-
movideo is available at purl.org/mathqa.

1 Introduction
A large part of mathematical search queries are formulated as well-formed ques-
tions [20]. Factoid question answering systems allow the user to pose questions
in natural language to provide quick and concise answers. In contrast, search
engines typically display ranked lists of web pages or documents [10]. Semantic
search engines aim to ‘understand’ the meaning and intent of a user’s query
instead of just retrieving literal or fuzzy matches of the input words [4].
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Figure 1: MathQA semantic search example relationship question with identifier
name and value retrieval and calculation. Demovideo at purl.org/mathqa.

In this paper, we continue our research on semantic formula search and fac-
toid mathematical question answering using our open-source MathQA system1,
which is hosted by Wikimedia at https://mathqa.wmflabs.org. The promi-
nent novelty of our contribution is the open source publication of a compre-
hensive and detailed benchmark for semantic formula search and mathematical
question answering on open data sources. We extend our former work [39] by a
comprehensive system evaluation in 15 different information need modes [5], out
of which only one was previously available. Furthermore, we add a comparison
to two state-of-the-art commercial competitors (Wolfram Alpha and Google).
The system can answer mathematical questions in English and Hindi language,
taking formula concept names and identifier relationships as intents. Identifiers
are formula variables with no fixed value2. Besides numbers and operators,
they are one of several formula constituent types. For example, the physics
formula F = m · a contains the identifiers F , m, and a. The system (Figure
1) presents the succinct formula answer for an identifier relationship question
along with names for the formula identifiers so that the user can understand
their meaning. Besides, values for constants are retrieved from the semantic
knowledge-base Wikidata, if available. Using these and additional user input
for the variables, MathQA also allows for calculations.

Wikidata was launched in 2012 to support Wikipedia by providing language-
independent items containing factual information that is framed as claims [44].
The claims consist of item-property relationship statements, which should be
supported by sources and can be read, accepted, declined, or edited by humans
and bots. Up to now, Wikidata contains around 5,000 statements3 that link
an item concept name to a mathematical formula [30]. Our MathQA system
exploits this information along with semantic indices, which we created from the
NTCIR Wikipedia and arXiv datasets [2] (unsupervised retrieval without anno-
tation). These datasets contain a selection of documents and articles to be used
as benchmarks for Mathematical Information Retrieval (MathIR) tasks. Our
unsupervised approach differs from supervised math problem solving experi-
ments, such as [19, 3] by mining linked open data (Wikidata) and open access

1A demovideo is available at purl.org/mathqa
2https://www.w3.org/TR/MathML3/chapter4.html#contm.ci
3Run https://w.wiki/z8p to get the current number.
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corporae (NTCIR arXiv and Wikipedia). Moreover, it can not be compared to
traditional formula search engines that search formula names and resources, tak-
ing the formula string as input. Here we focus on the opposite way, performing
a ‘semantic formula search’ by retrieving formula strings from names.

2 Related Work
In the following, we describe the state of the art in Factoid question answering
and mathematical QA systems. MathQA is a factoid QA system, and since we
concentrate our evaluations on the physics domain4, we review related systems.

2.1 Factoid Question Answering Systems
Factoid question answering systems, providing fast and succinct answers [10],
typically employ open semantic knowledge bases such as Freebase [8] or Wiki-
data [44] for answer retrieval. They are evaluated on datasets that contain la-
beled question-answer pairs, which refer to resources in the open databases [6].
Besides the challenges of knowledge base population [16], it is costly to generate
large benchmark datasets.

Datasets Since the start of the QA Track 5 at the ‘Text REtrieval Con-
ference’ (TREC-8) in 1998, there have been efforts to build QA systems and
datasets [24]. Berant et al. introduce the ‘WebQuestions dataset’ for bench-
marking QA engines that work on structured knowledge bases [6]. The ‘Stanford
Question Answering Dataset’ (SQuAD) [28] contains 100,000 questions posed
by crowdworkers on a set of Wikipedia articles. Bordes et al. introduce the
‘SimpleQuestions dataset’ containing 108,442 simple questions over Freebase
triples (subject, predicate, object) [9]. The ‘WikiQuestions dataset’ contains
4,390,597 questions and corresponding answer entities, generated by rephrasing
Wikipedia sentences as questions using a Wikipedia dump with Freebase entity
mentions [27]. Applying a novel neural network architecture on Freebase to
transduce facts into natural language questions, Serban et al. are able to gen-
erate 30 Million questions for the ‘30M Factoid Question-Answer corpus’ [40].

Systems Knowledge Graph based Question Answering (KG-QA) aims to an-
swer natural language questions retrieving facts from a knowledge graph [14].
Recent approaches employ neural networks for question generation [40] or an-
swer retrieval. Besides recurrent architectures, also long-term memory net-
works [9] or convolutional neural networks [45] are used for large-scale simple
question answering. In 2018, Tanon et al. introduce ‘Platypus’ as a multilin-
gual question answering platform for Wikidata [43]. The system can answer
complex queries in several languages, using hybrid grammatical and template

4Note that in our last publication, we already presented a general evaluation on random
math domains. Here, we focus on physics, having domain experts for the assessment.

5https://trec.nist.gov/data/qamain.html
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based techniques [39]. The ‘MathQA’ system is based on Platypus with a focus
on the mathematics domain.

2.2 Mathematical and Physics Question Answering
Question answering in the domain of mathematics was first implemented by
Smith in 1974. Investigating the understanding of natural language by comput-
ers, a system to answer elementary mathematics questions using ‘unrestricted
natural language input’ was implemented [41]. Unfortunately, until the last
decade, there was little interest and progress in the subject of MathQA. In
2012, Nguyen et al. introduced a math-aware search engine for a math question
answering system [23]. Their system can handle both textual keywords and
mathematical expressions. They use a Finite State Machine model to encode
the semantics of mathematical expressions and an online learning binary clas-
sifier for the ranking. The approach was benchmarked against three classical
information retrieval (IR) strategies on math documents crawled from Math
Overflow, claiming other methods by more than 9%. In 2017, Bhattacharya et
al. published a survey of question answering for math and science problems [7].
They review past and present efforts to make computers smart enough to pass
math and science tests. They conclude that ‘the smartest AI could not pass
high school.’ In the ‘SemEval 2019 task’ on math question answering, Hopkins
et al. derive a question set from practice exams [13]. Using 2778 training ques-
tions, the top system could answer 45% of the 1082 test questions correctly,
significantly better than the random guessing baseline found at 17%. In 2018,
Gunawan et al. introduced an Indonesian question answering system for solving
arithmetic word problems using pattern matching, which was integrated into a
physical humanoid robot [12]. Characterizing searches for mathematical con-
cepts, Mansouri et al. investigate search engine queries to find that well-formed
questions were surprisingly common [20]. This was one motivation for the ‘AR-
QMath Lab’ at CLEF 2020. In two tasks, the goal was to find answers to new
mathematical questions posted on a community question answering site (Math
Stack Exchange) by referring to old QA threads, containing both text and for-
mulae [21, 46, 34]. As the results indicated that approaches to the challenging
tasks still need to be elaborated further, the ARQMath Lab is planned to be
continued in the coming years.

Compared to general mathematical question answering, even less research is
done on the physics domain. Pineau [26] and Abdi et al. [1] discuss and present
first approaches to answer questions on physics. Pineau claims that equations
encapsulate a crucial part of the knowledge in physics [26]. Since equations
can be connected via their natural language meaning, the need for a semantic
search on physics is implied. Furthermore, a cross-disciplinary search would
allow researchers to find solutions to their problems or equations in other fields.
In 2018, Abdi et al. introduced an ontology-based question answering system
in the physics domain (QAPD) [1]. In the first step, an ontology is populated
using information from a textbook, lecture notes, and course materials. Sec-
ondly, ten human experts are asked to generate entity-relationship questions on
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ontology knowledge. These include identifier definition and unit queries, such
as ‘how to calculate resistance?’ and ‘what is the unit of resistance?’. The
system is evaluated on 3750 queries, achieving an F-measure of 76%. Since
units of measurement are an essential part of physical calculations, there have
been efforts to automatically infer them from articles (Wikipedia) supported by
knowledge-base groundings (Wikidata) [36].

Mathematical Entity Linking Kristianto et al. propose methods to link
mathematical expression in scientific documents to Wikipedia articles using
their surrounding text [18, 17]. Their learning-based approach achieves a preci-
sion of 83%, compared with a 6.22 baseline of a traditional MathIR method. A
balanced combination of mathematical and textual elements is required for the
linking performance to be reliable.

Besides linking to Wikipedia, Schubotz et al. [38, 32] describe linking math-
ematical formula content to Wikidata, both in MathML and LATEXmarkup. To
extend classical citations by mathematical, they call for a ‘Formula Concept Dis-
covery (FCD) and Formula Concept Recognition (FCR) challenge’ to elaborate
automated MathEL. Their FCD approach yields a recall of 68% and precision
of 68% for retrieving equivalent representations of frequent formulae. In 72% of
the cases, a formula name could be extracted from the surrounding text on the
NTCIR arXiv dataset [2].

Applications Mathematical Entity Linking - being less popular than its natu-
ral language correspondent - has so far been employed in mathematical question
answering systems, such as ‘MathQA’ using structured Wikidata items [39] and
proposed for semi-structured question posts from Math Stack Exchange (MSE)
at the CLEF ARQMath Lab [34]. Moreover, it is expected that MathEL will
enhance mathematical subject classification [35, 37].

3 Methods
Having reviewed the related work literature (see Section 2), we identify the
ability of a mathematical QA system to answer identifier6 relationship questions,
e.g., ‘what is the relationship between mass and energy’, as research gap. With a
research objective to investigate the feasibility of identifier relationship question
answering, our experiments were driven by the following research questions:

1. What is the quality of a translation of identifier symbols to names and
vice versa?

2. How well does a semantic formula search using identifier names or symbols
as query perform?

3. How well does a semantic formula search using the formula concept name
as query perform?

6For a definition of an identifier, see the introduction.
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4. How well do different index sources created from different datasets perform
in comparison?

5. How well does the semantic search perform compared to a commercial
knowledge-base and search engine?

In the following, we describe the methods we employed to answer the research
questions.

3.1 MathQA Workflow
Our mathematical question answering system workflow consists of the following
steps:

1. question parsing and classification,

2. index or knowledge-graph query,

3. entity linking or relationship extraction,

4. answer (candidate) retrieval and presentation,

5. formula parsing, and

6. result calculation.

In some cases, a QA system involves an additional question domain clas-
sification step. Since we concentrate on mathematical question answering and
MathQA does not distinguish subject classes, we skip this step. The implemen-
tation of these steps in our system will be described in Section 4. In this section,
we discuss the high-level concepts that are involved.

3.2 Question Parsing and Classification
MathQA is designed to answer the following questions:

1. What is the formula for [formula name]?

2. What is the [property] of [geometric object]?

3. What is the relationship between [identifier name 1] and [identifier name
2] and ...?

4. What is the relationship between [identifier symbol 1] and [identifier sym-
bol 2] and ...?

Question (1) is a general math type question yielding formula concepts,
whereas question (2) is a geometry type question, e.g., ‘what is the area of a
circle?’. Given that there are different question types, the first step in ques-
tion parsing is to distinguish them. Question types (3) and (4) can be easily
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recognized by the keywords ‘relationship’ or ‘relation.’ To differentiate (1) and
(2), we need to transform the question into a tree of triples (subject, predicate,
object). For type (1), the predicate is ‘formula,’ and the object needs to be
retrieved: (subject, formula,?), e.g., (velocity, formula,?). For type (2), both
predicate and subject are variable, yielding: (geometrical object, property,?),
e.g., (sphere, volume,?). We retrieved a list of geometry properties (volume,
area, radius, etc.) from Wikipedia. The system checks if the triple predicate is
in this list to classify the question as geometry type (2).

3.3 Mathematical Entity Linking
To answer the question types (1)-(4), entity (identifier or formula) concept
names need to be linked to symbols or strings. Using Wikidata, an additional
entity identification number (QID) is available. For example, the identifier sym-
bol ‘E’ can be linked to the Wikidata item with the name ‘energy’ and QID
‘Q11379’ if it occurs in the formula ‘E = mc2’, which can be assigned to the
concept name ‘mass-energy equivalence’ (Q35875). In our evaluation, we com-
pared three different sources for Math Entity Linking: indices created using
document / article selections taken from 1) the preprint repository ‘arXiv’7 or
2) Wikipedia, or knowledge-graph content retrieved from 3) Wikidata using
SPARQL queries8. We will discuss the index creation of 1) and 2) in Section 3.5
and querying Wikidata in Section 4, where we describe the Formula Retrieval
Module of MathQA.

3.4 Benchmarking
To evaluate MathIR methods and systems, such as MathQA, we need bench-
mark samples and datasets. We will now introduce the sources that are relevant
to our studies. As stated in the introduction, we exploit the NTCIR 11/12 arXiv,
and Wikipedia dataset [2] to create our semantic indices for the Formula Re-
trieval Module. The dataset is available at http://ntcir-math.nii.ac.jp/
data. It consists of 105,120 document sections taken arXiv papers, in total
containing over 60 million mathematical formulae in MathML markup. The
Wikipedia articles were converted from Wikitext to HTML.

Our evaluation sample consists of formula concepts, which were annotated
using the AnnoMathTeX 9 formula and identifier annotation recommender sys-
tem [33, 29]. The formulae were taken from an already existing benchmark
selection of 25 Wikipedia articles from physics (classical mechanics). The gold-
standard is persisted in the MathMLben10 repository [38].

7https://arxiv.org
8https://www.w3.org/TR/rdf-sparql-query
9https://annomathtex.wmflabs.org

10https://mathmlben.wmflabs.org
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Figure 2: Workflow of MathQA answering a relationship question using a se-
mantic identifier index (arXiv or Wikipedia) and formula catalog compiled from
the NTCIR 11/12 datasets (arXiv or Wikipedia).

3.5 Semantic Formula and Identifier Indexing
There are two ways to create a semantic formula or identifier index vocabu-
lary: 1) supervised labeling using Mathematical Entity Linking with systems
such as AnnoMathTeX or 2) unsupervised extraction from corpora, such as the
NTCIR arXiv and Wikipedia dataset. In this project, we use both methods in
comparison. Specifically, we test an unsupervised formula and identifier index
on a supervised benchmark sample. The index was created using Unsupervised
Formula Labeling, which should not be confused with Latent Semantic Indexing
(LSI) [11], which indexes documents instead of formulae or identifiers.

We created the following index catalogs:

1. identifier-semantics catalog (symbol to name)11

2. semantics-identifier catalog (name to symbol)12

3. formula concept catalog (name to string)13

We extracted (1) and (3) from the corpus and then inverted (1) to obtain
(2). For each formula or identifier in the corpora, we attributed words in the
surrounding text and ranked them by the frequency of their occurrence (see the
scores sorted by subject class14).

Figure 2 shows how the formula and identifier catalogs are employed in the
semantic search of MathQA to answer an identifier relationship question.

11For example, ‘m’ to ‘mass’.
12For example, ‘force’ to ‘F’.
13For example, ‘momentum’ to ‘p = m v’.
14https://en.wikipedia.org/wiki/User:Physikerwelt?oldid=738857609
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Identifier Catalogs We extracted the identifier from MathML <mi> tags
using a word window of ± 500 characters, which was chosen such that the
average MathML string length is overcome and words outside the formula envi-
ronment are reached. We neglected identifier indices. The terms were lowered
and cleaned from punctuation or other symbols. Stopwords were excluded. The
Wikipedia identifier semantics catalog contains a total of 1670 entries, whereas
the arXiv catalog contains 94833. The difference (factor 57) is reasonable con-
sidering the different corpus sizes in terms of documents (factor 53).

Formula Catalogs The number of formulae in the catalogs are 30776 for
Wikipedia and 118120 for arXiv. As we were evaluating on a physics sample
(see Section 5), we confined the arXiv index to 10 physics subject classes: ‘astro-
ph’, ‘cond-mat’, ‘gr-qc’, ‘hep-lat’, ‘hep-ph’, ‘hep-th’, ‘math-ph’, ‘nlin’, ‘quant-
ph’, and ‘physics’. The total number of formulae in the catalog is 134217 for
Wikipedia and 3450770 for arXiv (here the increase is only a factor 26). We
created single-word indices from the surrounding text of the formulae. For
multiple word concept queries, such as ‘angular acceleration’, we joined the
results in a union.

4 Implementation
While in Section 3, we explained the data mining for MathQA, in this section
we will describe the system with its constituent modules. According to the
steps presented in Section 3.1, we developed five MathQA modules. The Ques-
tion Parsing Module (step 1) transforms questions into a triple representation
to classify the type of intent (general, geometry, or relationship). The For-
mula Retrieval Module (steps 2 and 3) queries an index (arXiv, Wikipedia) or
knowledge-graph (Wikidata). The Formula Answer Module (step 4) identifies
the candidates and presents the top formula result to the user, including identi-
fier names and values if available. The Formula Parsing and Calculation Module
(steps 5 and 6) split the formula into its constituents to allow for calculation
using the user’s input values for variables and retrieved values for constants if
applicable. The MathQA web interface design is based on Ask Platypus15. The
system relies on the web application framework Flask 16. The programming
languages Python, JavaScript, and HTML are used.

Question Parsing Module Employing the Stanford CoreNLP17 server and
Natural Language Toolkit (NLTK)18 library, the module produces (subject,
predicate, object) triples from the free-text questions. The CoreNLP server
runs in Java. It allows for the required dependency and constituency parsing in
English. Currently, it supports five other languages: German, French, Spanish,

15https://askplatyp.us
16https://pypi.org/project/Flask
17https://stanfordnlp.github.io/CoreNLP
18https://www.nltk.org
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# Find items with ’has part’ (P527)
’energy’ (Q11379) and ’mass’ (Q11423)
SELECT ?item ?itemLabel ?formula ?parts ?partsLabel
WHERE {

?item wdt:P527 wd:Q11379.
?item wdt:P527 wd:Q11423.
?item wdt:P2534 ?formula.
?item wdt:P527 ?parts

SERVICE wikibase:label {
bd:serviceParam wikibase:language "en".}}

Figure 3: SPARQL query to retrieve Wikidata formula items either using a
python client or web interface at https://query.wikidata.org.

Arabic, and Chinese. The NLTK platform provides interfaces to corpora, lex-
ical resources, and text processing methods. We use its parsing, tokenization,
stemming, and stopword removal capabilities for our system.

Formula Retrieval Module We use Pywikibot19 and SPARQL20 libraries
to retrieve formulae (format unrestricted) and their identifiers (amount unlim-
ited) from Wikidata items. Pywikibot is an interface to the MediaWiki API,
whereas the SPARQL client can perform SELECT and ASK queries against a
SPARQL endpoint via HTTP. Figure 3 shows an example SPARQL query for
an identifier relationship question to retrieve all items with specific items, e.g.,
‘energy’ (Q11379), as ‘has part’ property (P527). A permanent speedlink to
the query in a web interface is https://w.wiki/39RQ. The analogous query for
items as ‘calculated from’ (P4934) can be accessed via https://w.wiki/39RR.
We need to query both properties since, currently, they are both used by the
community. Identifier symbols are commonly inserted via ‘quantity symbol
(LaTeX)’ (P7973), ‘quantity symbol (string)’ (P416), or ‘in defining formula’
(P7235) property. You can find an example query at https://w.wiki/$vr. We
employed the aforementioned queries in our evaluation tasks.

Formula Parsing and Calculation Module To provide calculations using
the formula answer, the LATEXstring needs to be parsed. This is done via the
python SimPy21 module. Although the main purpose of the library is to provide
process-based discrete-event simulations, it can also be used to generate abstract
syntax trees from formulae and perform calculations. At the moment, only
a single left-hand-side identifier can be calculated using input values for the
right-hand side identifiers. In the future, we plan to use Computer Algebra
Systems (CAS) to rearrange formulae such that each occurring identifier can be

19https://github.com/wikimedia/pywikibot
20https://pypi.org/project/sparql-client
21https://simpy.readthedocs.io/en/latest
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Table 1: Excerpt of 10 from the 65 benchmark examples used for the evaluation
of our MathQA system (modes 1-15). The goldstandard [38] is persisted at
https://mathmlben.wmflabs.org (GoldID 310-375).

GoldID QID Name Formula
310 Q11376 acceleration a = dv

dt

311 Q186300 angular acceleration α = dω
dt

312 Q834020 angular frequency ω = 2πf
313 Q161254 angular momentum L = r× p

314 Q161635 angular velocity ω = dϕ
dt u

315 Q2945123 center of mass
∑n

i=1mi(ri −R) = 0

316 Q2248131 centripetal acceleration ac = v2

r

317 Q172881 centripetal force ~F = −mv2r̂
r

318 Q843905 circumference C = π · d = 2π · r
319 Q11382 conservation of energy Etot1 = Etot2
320 Q2305665 conservation of momentum ptot1 = ptot2

calculated.

5 Evaluation
To introduce benchmark results for mathematical question answering on open
data, we evaluated our system on a formula set (Table 1), which was persisted
on the MathMLben benchmark platform from [38]. Using graduated domain
experts from physics, we assessed over 7,000 results in 15 different evaluation
modes (as in [5]). Modes 1-6 (identifier semantics) are preparation steps for
modes 7-12 (semantic search). All evaluation scripts and tables can be found
in the respective mode folders in the MathQA repository at https://github.
com/ag-gipp/MathQA/tree/master/evaluation/semanticsearch.

5.1 Evaluation Modes, Metrics, and Examples
In the following, we will describe the evaluation modes (input and output),
metrics (accuracy, ranking), and examples (formula benchmark) we employed.

Evaluation Modes To evaluate the semantic search capabilities of our sys-
tem, we assessed its performance to

• search identifier names by symbols,

• search identifier symbols by names,

• search formula strings by identifier symbols,

• search formula strings by identifier names,
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Table 2: Evaluation mode 1-15 results for formula concept and identifier name or
symbol queries using arXiv or Wikipedia indices or Wikidata SPAQRL queries.
Only mode 15 (orange) was previously available. Modes 1-14 (blue) are contri-
bution of this paper.

Mode Query Top1 Acc. mean(DCG)
1 names to symbols, arXiv 0.24 0.82
2 names to symbols, Wikipedia 0.31 0.92
3 names to symbols, Wikdata 0.12 0.20
4 symbols to names, arXiv 0.37 0.79
5 symbols to names, Wikipedia 0.12 0.54
6 symbols to names, Wikdata 0.22 0.20
7 identifier names, arXiv 0.06 0.23
8 identifier names, Wikipedia 0.03 0.24
9 identifier names, Wikdata 0.85 0.98
10 identifier symbols, arXiv 0.00 0.00
11 identifier symbols, Wikipedia 0.24 0.98
12 identifier symbols, Wikdata 0.48 0.46
13 formula names, arXiv 0.00 0.00
14 formula names, Wikipedia 0.17 0.98
15 formula names, Wikdata 0.52 1.03

• search formula strings by formula names.

Table 2 lists the resulting 15 different evaluation modes. The following eval-
uation sections will refer to the mode numbers. We will divide thematically
into identifier names vs. symbols (modes 1-6), identifier relationship questions
(modes 7-12), and formula concept name retrieval (modes 13-15).

For modes 1-15, we framed the evaluation as a ranking problem (calculat-
ing accuracy and ranking quality), aiming to determine the best source (arXiv,
Wikipedia or Wikidata) to be used in our system. For mode 15, we addi-
tionally compared our system to commercial competitors (knowledge-base and
calculation-engine Wolfram Alpha and search-engine Google).

Evaluation Metrics For each of our 15 different evaluation modes, we calcu-
lated the top1 accuracy and Discounted Cumulative Gain (DCG). In each mode
and result, the system could score either 0 points (irrelevant), 1 point (relevant),
or 2 points (exact match as in benchmark). We assessed the top10 results. Us-
ing this score, we could calculate the top1 accuracy as the number of results
with score 1 or 2 divided by the total number of evaluations. The Discounted
Cumulative Gain (DCG) ranking performance measure is calculated according
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to [15] as

DCGp =

p∑
i=1

reli
log2(i+ 1)

,

where reli is the relevance (here 0, 1 or 2) at position i and p is the ranking scale
cutoff (here position 10). In some cases, an Ideal Discounted Cumulative Gain
(IDCG) can be set to calculate a normalized DCG (nDCG). In our case, we could
not estimate an IDCG. One possibility would be to assign 2 points for each of the
ten ranking positions. This would yield an IDCG of

∑10
i=1 2/log2(i+ 1) = 9.09.

However, providing the exact benchmark match at each of the ten positions is
very unlikely. Moreover, having the exact match (2 points) at position 1 and
relevant hits (1 point) at each subsequent is not realistic either as ten identifier
names or symbol synonyms often do not even exist. Each other possibility, e.g.,
2 points first, followed by four times 1 point, and five times 0 points, is arbitrary.
Therefore, we did not calculate an IDCG and nDCG.

Evaluation Examples Our examples test set (Table 1) was created from a
selection of 25 physics Wikipedia articles, for which formula and identifier en-
tities were linked using a formula and identifier name annotation recommender
system [33]. The formula selection is persisted on the benchmark platform
MathMLben (https://mathmlben.wmflabs.org) ranging form GoldID 310 to
375. For each example formula, a GoldID represents the numbering. It also
corresponds to the Wikidata QID of the concept item and its name. The con-
stituting identifiers (e.g., E, m, and c for E = mc2) are annotated and linked to
Wikidata items using either the ‘has part’(P527) or ‘calculated from’ (P4934)
Wikidata properties. The formula and identifier names and symbols are used
as query inputs, as described in the following subsections.

5.2 Formula Identifier Symbol and Name Relationships
Modes 1-6 prepare the evaluation of the semantic formula search (modes 7-12).
It is assessed how accurate identifier names can be translated into symbols and
vice versa. Example questions could be ‘What are the symbols for energy?’ or
‘What are the meanings of the symbol E?’. To implement a semantic search
on a formula database that is not semantically indexed, i.e., identifier names
are not annotated, we need to translate the user’s natural language query into
symbolic language first (modes 1-3). Subsequently, after parsing, formulae can
be found using their constituting identifier symbols. On the other hand, if we
already have a semantic index, we can also query it using symbols after the
translation (modes 4-6). In the following, we discuss the evaluation execution
and results for the index sources arXiv, Wikipedia, and Wikidata, respectively.

MathQA on arXiv and Wikipedia To evaluate the translation of identifier
names to symbols and vice versa on the arXiv (modes 1 and 4) and Wikipedia
(modes 2 and 5), we employed the respective semantic identifier indices, which
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were previously created from the NTCIR 11/12 arXiv dataset and Wikipedia
(see Section 3.5). Each index is sorted by the ranking score (occurrence fre-
quency of an identifier name-symbol relationship). For each example query
formula from the benchmark (Table 1), all annotated identifier names and sym-
bols are extracted. For each symbol or name, the top10 ranked results are then
evaluated. For each result, we assess (score, rank) tuples to calculate the DCG
ranking measure as described in Section 5.1. Table 3 shows example results
for the arXiv (modes 1 and 4). With around 250 identifier name-symbol pairs,
almost 500 query predictions (translation in both directions) had to be assessed.
The evaluation is analogous for Wikipedia (modes 2 and 5) with an additional
500 evaluation table rows. The scripts and tables for prediction and scoring can
be found in the respective mode folder of the MathQA repository.

Table 3: Example evaluation mode 1 and 4 results (first two GoldIDs) for iden-
tifier symbol-name relationship index that was created from the NTCIR arXiv
11/12 dataset [2]. Exact match to benchmark score 2 points, also relevant re-
lated results 1 point. The list (modes 1 and 4) is continued with 489 additional
queries (total 498) and structurally identical to the one for Wikipedia (modes 2
and 5).

GoldID Query Benchmark Matches (Score, Rank) DCG
310 a acceleration - - 0
310 v velocity velocity, vector, speed (2,2), (1,5), (1,10) 1.94
310 t duration time (1,1) 1
310 acceleration a a, g (2,1), (1,4) 1.69
310 velocity v v, c, V, u (2,1), (1,2), (1,4), (1,5) 3.45
310 duration t τ (1,3) 0.5
311 α angular acceleration - - 0
311 ω angular velocity frequency, oscillator, harmonic (1,1), (1,8), (1,9) 1.62
311 t duration time (1,1) 1
312-375 ... ... ... ... ...

MathQA on Wikidata To evaluate the identifier name-symbol translation
prediction of MathQA on Wikidata (modes 3 and 6), we employed SPARQL
queries to retrieve the result candidates (see Section 4). First, a SPARQL
query was compiled to find all items with ’quantity symbol (LaTeX)’ (P7973)
or ’quantity symbol (string)’ (P416) or ’in defining formula’ (P7235) in a union
list. We had 84 results for P416, 1248 for P7973, and 599 for P7235, i.e., 1931
in total. Second, the items were used to create a semantic index for identifier
names and symbols, respectively, as for the arXiv and Wikipedia. Since the
Wikidata ‘corpus’ is smaller than the other source corporae, we only had results
for 195 of the 500 queries. The missing ones were treated as scoring zeros.
For mode 3 (names to symbols), the retrieved results scored a DCG of 0.25,
yielding 0.20 taking into account the missing results. The top1 accuracy was
0.16 and 0.12, respectively. For mode 6 (symbols to names), the retrieved results
scored a DCG of 0.34, yielding 0.20 taking into account the missing results. The
top1 accuracy was 0.36 and 0.22, respectively. Comparing the two modes, it is
apparent that the symbol-to-name conversion performs better than the name

14



to symbol conversion. This contrasts the overall results for all sources (see
next paragraph). Due to the small size of the Wikidata index, it may not be
representative.

Comparison Table 2 shows the results of modes 1-6, comparing top1 accu-
racy and mean DCG. Comparing the mapping directions, we find that modes
1-3 (’names to symbols’) perform better than modes 4-6 (’symbols to names’)
in terms of mean DCG (0.65 vs. 0.51), but slightly less in terms of top1 ac-
curacy (0.22 vs. 0.23). This suggests the assumption that identifier symbols
are more ambiguous than identifier names. For a given symbol, there are more
potential names than there are symbols for a given name. Comparing the index
sources, we find that modes 1 and 4 (‘arXiv’) perform better than modes 2 and
5 (’Wikipedia’) and modes 3 and 6 (’Wikidata’) both in terms of mean DCG
(0.81 vs. 0.73 vs. 0.20) and top1 accuracy (0.30 vs. 0.21 vs. 0.17). The arXiv is
most, Wikidata least efficient as a source to provide a semantic formula search
by using identifier name or symbol relationships. Since the corpus size decreases
from the arXiv to Wikipedia to Wikidata, this is an indication that corpus size
helps to improve index quality (the larger, the better).

5.3 Formula Identifier Name or Symbol Relationship Ques-
tions

Modes 7-12 evaluate the semantic search of formulae by their constituting iden-
tifier names or symbols. Example questions could be ‘What is the relationship
between mass and energy?’ or ‘What is the relationship between the symbols
m and E?’. For each mode and example, we evaluated the top10 ranked pre-
diction of the different semantic indices for identifier and formulae (see Section
3.5). This yields a total of 6 x 66 = 396 queries to evaluate. As the formula
indices are large, the semantic search provided more results, from which we only
considered the top ten for each query.

MathQA on arXiv andWikipedia Querying the NTCIR arXiv andWikipedia
formula indices for identifier relationships yielded a total 4225 formulae for the
combinations of constituting identifiers (names or symbols). We also tested
querying the formula index using multiple possibilities for each identifier name or
symbol (e.g., symbols E and ε for the name ‘energy’ - or names ‘time’ and ‘dura-
tion for the symbol t). However, due to low accuracy, we discarded these modes.
For each formula, the system also retrieved the name of the arXiv document
(e.g., ‘astro-ph0203007.tei’) or Wikipedia article (e.g., ‘Acceleration.html’). The
number of results per example query (GoldID) varied between zero (e.g., for ‘an-
gular acceleration’) to one (e.g., for ‘electromagnetic force’) to a maximum of
967 for ‘momentum’ (i.e., querying the relationship between momentum, mass,
and velocity or p, m and v respectively). The fraction of the total retrieved
formulae from the arXiv and Wikipedia indices is 4225 / 135997 = 3.1%.
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MathQA onWikidata QueryingWikidata for identifier relationships yielded
a total 11285 formulae for the combinations of constituting identifiers (names
or symbols). As for the identifier name and symbol translations (modes 1-6),
we employed SPARQL queries. We retrieved identifier relationships via ‘has
part’(P527) or ‘calculated from’ (P4934) Wikidata item properties. Unfortu-
nately, sometimes the right-hand side of a formula is not annotated, leading to
fewer results for the name queries (mode 9). Fortunately, the symbol queries
(mode 12) are not affected. They search for occurrences of the given symbols
(resp. their combinations) in the mathml22 formula strings of the Wikidata
item’s ‘defining formula’ property (P2534). The SPARQL queries yielded 10048
results for mode 9 but only 1237 for mode 12. Apparently, there are already a
lot of items where the identifiers are annotated with their names. Due to the
ambiguity of the identifier symbols, it is more favorable to query by names, and
we suspect that users will also prefer this mode.

Comparison Table 2 shows the results of modes 7-12, comparing top1 ac-
curacy and mean DCG. Comparing the query types, we find that querying by
identifier names (modes 7-9) outperforms symbols (modes 10-12) in terms of
top1 accuracy (0.31 vs. 0.24), while both types are equally good (0.48) in terms
of mean DCG. A priori, we could not find a reason why one should outperform
the other apart from the fact that symbols are more ambiguous than names
since the vocabulary is much smaller. Comparing the index sources, we find that
modes 9 and 12 (’Wikidata’) perform better than modes 8 and 11 (’Wikipedia’)
and modes 7 and 10 (‘arXiv’) both in terms of mean DCG (0.72 vs. 0.61 vs.
0.12) and top1 accuracy (0.67 vs. 0.14 vs. 0.03). Here interestingly, a smaller
index corpus size leads to more precision. This indicates that for the smaller
corpora, the formula index is performing better than the identifier index.

5.4 Formula Concept Name Questions
Modes 13-15 evaluate the retrieval of formulae by their concept names (e.g.,
‘What is the formula for mass-energy equivalence?’ yielding E = mc2). While
for the arXiv and Wikipedia (modes 13 and 14), we created a semantic index
for formulae (in analogy to the identifier indices), for Wikidata (mode 15), the
formulae are directly retrieved using a SPARQL query (see Section 4). Mode
15 is deployed in the live MathQA system, as it yielded the best results.

MathQA on arXiv andWikipedia Querying the NTCIR arXiv andWikipedia
semantic formula index catalogs, we were confronted with the problem of re-
trieving very short formulae as top results (e.g., t = 0), which were mostly
not relevant results. The reason is that formulae are ranked by the frequency
of their occurrence (number of duplicates) in the corpus, and apparently, the
short ones appear more often than the long ones. We tried to get more relevant
results by inverting the ranking but could not improve the quality this way.

22https://www.w3.org/Math

16

https://www.w3.org/Math


Unfortunately, for the arXiv, the top1 accuracy and mean DCG is even zero,
meaning that there were no relevant results (scoring 1 or 2) within the top10
hits. The Wikipedia index performed much better with a top1 accuracy of 0.17
(17% of the first hits were relevant) and mean DCG of 0.98, which is close to
the performance when querying Wikidata (see the comparison in Table 2).

MathQA on Wikidata (Comparison to Commercial Systems) As for
modes 3, 6, 9, and 12, we retrieved the formula results for mode 15 from Wiki-
data using a SPARQL query. Besides comparing it to the other index sources
(arXiv and Wikipedia), we carried out an additional competition against a
commercial knowledge base (Wolfram Alpha) and commercial search engine
(Google). Mode 15 is the only one in which MathQA can be compared to
its external competitors, as they do not allow for the other modes. Fig-

Table 4: Query results for formula name questions. For the first five benchmark
examples, the formula retrieved by MathQA (blue) is compared to the results of
a commercial knowledge base (Wolfram Alpha, pink) and search engine (Google,
lime).

Query Concept Name MathQA Formula Wolfram Alpha Formula Google Formula
acceleration a = dv/dt v = at ā = ∆v/∆t
angular acceleration α = dω/dt ω = αt α = ∆ω/∆t
angular frequency ω = 2πf ν = ω/(2π) ω = 2π/t
angular momentum L = r × p L = Iω, ω = 2πn L = mvr
angular velocity ω = dϕ/dt · u ω = αt ω = ∆θ/∆t

ure 4 shows screenshots of the results of the different competing systems for
an example formula (GoldID 363) from our test set. MathQA (above) and
Google (below) display the same formula, but only MathQA allows for calcula-
tion. Wolfram Alpha (middle) also allows for calculation but using a different
formula with different identifiers, which is relevant too. Table 4 lists the for-
mulae retrieved by the three systems for the first five example query concept
names (GoldID 310-315 in Table 1). For each system and GoldID, we evalu-
ated whether a formula is displayed and relevant. Besides, the availability of a
calculation is assessed. For Google, we additionally report the availability of a
box around the formula in contrast to only highlighting the formula result in
the text of a web page. The Google formula box is only available in the En-
glish language at the moment. The results of our investigation can be found in
the evaluation folder at https://github.com/ag-gipp/MathQA/blob/master/
evaluation/semanticsearch/evalresultsMQAvsWAvsG.pdf. For clarity, the
coloring scheme is the same in Figure 4, Table 4, and the result table. Wol-
fram Alpha yields relevant formulae in 48% of the queries, 81% of which can
be used to calculate the occurring quantities. MathQA performs slightly better
with 52% relevant hits and almost equal 80% calculation availability. Google
provides relevant results in 68% of the cases. However, only in 58%, a boxed for-
mula is displayed and thus performing comparably to the other systems. Still,
Google slightly outperforms the other two, which is not surprising given its
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Figure 4: Screenshots of MathQA (above), Wolfram Alpha (middle), and Google
(below) answering the same question: "what is the formula for speed?". Color-
ing will be reused in Table 4.
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expertise and budget. Yet, Google only in one case (GoldID 218: ‘circumfer-
ence’), i.e., 2% the possibility to calculate is enabled. One reason why MathQA
could often not retrieve and display a formula is that for many of the cases, it
links to Wikidata disambiguation page items. For example, ‘work’ can be either
‘energy transferred to an object via the application of force on it through a dis-
placement’ (Q42213) or ‘physical or virtual object made by humans’ (Q386724).
Both items have the same name.

Comparison Table 2 shows the results of modes 13-15, comparing top1 ac-
curacy and mean DCG. Comparing the index sources, we find that, like for
modes 7-12, Wikidata performs better than Wikipedia and the arXiv. This
supports our assumption that formula name indices created from smaller cor-
pora are more precise, in contrast to the results for the identifier name-symbol
mappings. A question like ‘What is the formula for symbol E?’ would not be
reasonable due to the large symbol ambiguity. This is why we did not eval-
uate the respective additional modes 16-18. As for the identifier relationship
questions (modes 7-12), Wikidata performs best and is therefore also deployed
for the formula concept name questions (modes 13-15) in the live version of
MathQA.

6 Discussion
In this section, we describe our dataset benchmarking and discuss challenges
with data and format impermanence of Wikidata.

6.1 Benchmarking
We introduce a benchmark for mathematical question answering in 15 evaluation
modes on open formula data (Wikidata, Wikipedia, arXiv). The selection and
results are persisted in the MathMLben and MathQA repositories (see Section
5). In the live version of our system, we deployed the best performing modes:
Wikidata queries using Pywikibot (formula string retrieval via formula concept
name) and Wikidata SPARQL queries (formula string retrieval via identifier
names). After paper publication, we will add a reference to our sample dataset,
evaluation metrics, and results to benchmark platforms, such as Papers With
Code23. The repositories contain all necessary data persisted to reproduce the
results and potentially compare and present improved systems. This is required
since Wikipedia and Wikidata are constantly changing. To reproduce results
on raw open data, the respective dumps of Wikipedia24 and Wikidata 25 can be
employed. For queries on data dumps, Tanon et al. introduced [42] a SPARQL

23https://paperswithcode.com/task/mathematical-question-answering
24https://archive.org/details/enwiki-20210120
25https://archive.org/details/wikibase-wikidatawiki-20210120
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endpoint for Wikidata history26. The impermanence of the data model and
content change of Wikidata is discussed in the next section.

6.2 Challenges and Limitations
Wikidata data model Employing open databases, such as Wikidata for in-
formation retrieval tasks and systems, such as question answering, has the ad-
vantage of profiting from a constantly growing community-curated collection
of world knowledge. However, there are some drawbacks, such as data model
impermanence and content change.

In the case of MathQA working on Wikidata, we noticed three challenges
that prevented the system from constantly providing the same results:

• Wikidata users deleted the ‘defining formula’ for some items. For example,
the equation PV = nRT was shifted from the item ‘gas’ (Q11432) to
‘ideal gas law’ (Q191785), refining the semantic context. This forced us
to change the list of formula name example questions.

• Wikidata users changed the formula identifier data model in both property
usage (from ‘has part’ to ‘in defining formula’ / ‘symbol represents’) and
sequence (from qualifier, item, symbol to qualifier, symbol, item). See
Figure 5 for an illustration of the variants. This broke the functioning of
the relationship questions until code adaption.

• In the geometry items, the object attributes can either be modeled as
direct properties, e.g., ‘area’ (P2046) or ‘volume’ (P478) in the form prop-
erty, formula. However, a commonly used alternative is linking the at-
tribute items instead as ‘has quality’ (P1552) property, e.g., ‘area’ (Q11500)
or ‘volume’ (Q39297) in the form property, item, formula. The emergence
of further alternatives potentially breaks the geometry question function-
ality.

In summary, formulae can always be deleted from or shifted to other items.
Furthermore, different properties may be used to store identifier semantics or
geometric attributes. Aggravatingly, different hierarchical sequence schemes
may be employed (see Figure 5). Notably, many attributes are available both as
property and item (e.g., ‘volume’ as P1552 and Q39297). Changes in property
usages and schemes are ideally discussed by the community on property talk 27

and proposal28 pages.
To make our system more robust, we introduce a cache with an alert in case

changes cause a previously working query to be broken. Users can then inspect
the respective items to adapt the system. An interesting research question would
be to track such changes to predict potential extensions using rule-based or
statistical machine learning. This will help the system to auto-repair, searching

26https://github.com/Tpt/wikidata-sparql-history
27https://www.wikidata.org/wiki/Property_talk:P4934
28https://www.wikidata.org/wiki/Wikidata:Property_proposal/symbol_represents
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Figure 5: Variants in the Wikidata formula identifier data model (as of Decem-
ber, 29th 2021) in different schemes a) .qualifier, item, symbol, and b) qualifier,
symbol, item.

for identifier information by employing semantic similarity metrics. Given data-
query pairs, we can explore predicting one from the other.

Further challenges An additional challenge is the aforementioned issue that
for some concept names, disambiguation page items (e.g., for ‘work’) prevent
the system from finding the mathematical item. Furthermore, the Stanford
parser sometimes does not provide the correct tree, especially for long concept
names involving verbs or adjectives, such as ‘Dirac equation in curved spacetime
(Q16853908)’. Lastly, some concepts have synonyms that should link to the
same formula concept, such as ‘electric force’ and ‘Coulomb force’ or ‘M–sigma
relation’ and ‘Faber-Jackson law.’

7 Conclusion and Outlook
In this section, we summarize our contributions and outline the benefits and
future directions of our work.

7.1 Conclusion
In this paper, we demonstrated how Mathematical Entity Linking (MathEL)
and Unsupervised Formula Labeling (UFL) can be used for semantic formula
search and mathematical question answering. We implemented a system that
can answer factoid natural language questions yielding a formula. The system
also displays names of the constituting formula identifiers and values of con-
stants if this information is available on Wikidata. Moreover, it allows for a
computation using additional input values from the user. We tested our system
and retrieval methods on a selection of annotated formula concepts, created
from physics Wikipedia articles using a formula and identifier name annotation
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recommender system. We evaluated over 5,000 results in 15 different modes
using identifier names and symbols as input or output, respectively, or formula
names as input and strings as output, and Wikidata, Wikipedia, or the arXiv
as source for the index.

Results Research questions 1-3 are answered in Table 2 and Section 5.2 to
5.4. In the identifier name and symbol index evaluations, Wikidata outper-
formed Wikipedia and the arXiv as source in terms of both top1 accuracy and
Discounted Cumulative Gain (research question 4). Based on the results, we
decided to choose Wikidata as source for the live version of MathQA since it
is intended to only display the highest-ranked formula. Besides, in contrast to
the other indices, which were fixed snapshots on the NTCIR 11/12 benchmark
evaluation datasets, Wikidata is constantly extended by new formulae. For the
search of formula strings by formula names, the Wikidata SPARQL query re-
trieval scored highest compared to the semantic indices created from the arXiv
and Wikipedia. Using this best-performing mode, we compared our MathQA
system to a commercial knowledge-base and calculation-engine (Wolfram Al-
pha) and search-engine (Google). While our system (52%) was outperformed
by Google (68%), it outperformed Wolfram Alpha (48%). For 80% of the test
formulae, MathQA could allow for calculations (research question 5). The ad-
vantage of our system over the commercial competitors is its transparency -
being open source and working on linked open data. Moreover, Wolfram Alpha
and Google can only answer formula concept name questions (modes 13-15) and
not identifier queries (modes 1-12). MathQA is available hosted by Wikimedia
at https://mathqa.wmflabs.org.

7.2 Outlook
Our MathQA system is intended to aid students and researchers from STEM
disciplines in finding formulae by querying concept names or identifier rela-
tionships. To the best of our knowledge, there is no comparable search engine
available so far. Students can get an overview of identifier relationships to un-
derstand connections between different identifier concepts better.

Future Work So far, we did not implement the question type ‘What is the
name of [formula string]?’ This is the classical mode of a formula search en-
gine, and we concentrate on the reverse modes, i.e., searching formula strings
by names. Although this is not the focus of our research, we will extend this
functionality. Moreover, we aim to automate the index construction from arXiv
datasets or Wikipedia data dumps. MathQA should also return links to arXiv
papers or Wikipedia articles (possibly with the surrounding text passage). How-
ever, as classical commercial search engines (e.g., Google) already provide this,
it is again not our focus. What we consider a more important next step is to in-
clude the units of the identifiers [36], e.g., ‘Coulomb’ for ‘charge.’ However, the
Wikidata knowledge-graph still needs to be completed with this information.
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Having crawled formula and identifier relationships, we can create a graph of
relevance relations, a ‘FormulaRank’ (in analogy to ‘TextRank’ [22] and ‘PageR-
ank’ [25]) to get a concept map of a specific subject ontology (e.g., in physics).
Lastly, Entity Linking to Wikidata items can possibly be used to support and
enhance mathematical document classification [35] by augmenting subject class
labels with concept labels. We will explore this in an upcoming research project.
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